Highly Concentrated Ferrus Removal from Groundwater Using Powdered Activated Carbon as Adsorbent
Subject Areas : Journal of Chemical Health RisksBehrouz Akbari-Adergani 1 , Neda Memarzadeh 2 , Ali Asghar Ghoreyshi 3 , Kasra Pirzadeh 4
1 - Vali-e Asr Avenue, Tehran, Iran
2 -
3 -
4 -
Keywords:
Abstract :
- Kaur L., Gadgil K., Sharma S., 2015. Assessment of phytoextranction potential of fenugreek (TrigonellaenumgraecumL.) to remove heavy metals (Pb and Ni) from contmaminated soil.J Chem Health Risk.5(1), 1-14.
- Su Y., Adeleye A., Huang Y., Zhou Z., Akeller A., Zhong Y., 2016. Direct synthesis of novel and reactive sulfide modified nano iron through nanoparticle seed-ing for improved cadmium-contaminated water treat-ment.Sci Rep. 6(24358), 1âââ14.
- Hejazi H.A., 2013. Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC J. 9(3), 276-282.
- Runtti H., Tuomikoski S., Kangas T., Lassi U., Kuokkanen T., Rämö J., 2014. Chemically activated carbon residue from biomass gasification as a sorbent for iron (II), copper (II) and nickel (II) ions. J Water Process Eng. 4, 12-24.
- Park J.H., Chon H.T., 2016. Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near CuâââPbâââZn mine. Environ SciPollut Res Int. 23(12), 11814âââ11822.
- Pratte-Santos R., Ribeiro A., Oliveira J., 2016. Guidelines for recreation water quality in Brazil, USA and Canada: enteric viruses as faecal pollution indica-tors. J Trop Dis. 4(2), 195-196.
- Karnib M., Kabbani A., Holail H., and Olama Z., 2014. Heavy metals removal using activated carbon, silica and silica activated carbon composite.Energy Procedia. 50, 113-120.
- Gao J., 2016. Green modification of outer selective P84 nanofiltration (NF) hollow fiber membranes for cadmium removal. J Membr Sci. 499, 361âââ369.
- Prapagdee S., Piyatiratitivorakul S., Petsom A., 2016. Physicochemical activation on rice husk biochar for enhancing of cadmium removal from aqueous solution. Asian J Water Environ Pollut. 13(1), 27-34.
- Khan T.A., Chaudhry S.A., Ali I., 2015. Equilibrium uptake, isotherm and kinetic studies of Cd (II) adsorption onto iron oxide activated red mud from aqueous solution. J Mol Liq. 202, 165-175.
- Dinh-Minh T., Lee B-K., 2016. Effects of func-tionality and textural characteristics on the removal of Cd(II) by ammoniated and chlorinated nanoporous activated carbon. Material Cycles and Waste Man-agement J. 19(3), 1022-1035.
- Liou T.H., 2010. Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation.ChemEng J. 158(2), 129-142.
- Yang J., Qiu K., 2011. Development of high sur-face area mesoporous activated carbons from herb residues. ChemEng J. 167(1), 148-154.
- Kang S., Jian-chun J., Dan-dan C., 2011. Prepara-tion of activated carbon with highlydevelopedmesoporous structure from Camellia oleifera shell through water vapor gasification and phosphoric acidmodification.Biomass.Bioenerg. 35 (8), 3643-3647.
- Angñn D., Altintig E., Köse, T. E., 2013. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresource Technol.148, 542-549.
- Babel S., and Kurniawan T. A., 2004. Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere. 54(7), 951-967.
- Angin D., 2014. Production and characterization of activated carbon from sour cherry stones by zinc chloride. Fuel. 115, 804-811.
- Al-Othman Z., Ali R., Naushad M., 2012. Hexava-lent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorp-tion kinetics, equilibrium and thermodynamic studies. ChemEng J. 184, 238-247.
- Yang J., Qiu K., 2010. Preparation of activated carbons from walnut shells via vacuum chemical acti-vation and their application for methylene blue
- removal. ChemEng J. 165 (1), 209-217.
- Imamoglu M., Tekir O., 2008. Removal of copper (II) and lead (II) ions from aqueous solutions by ad-sorption on activated carbon from a new precursor hazelnut husks.Desalination. 228(1), 108-113.21. Moghadam M.R., Nasirizadeh N., Dashti Z., Babanezhad E., 2014. Removal of Fe (II) from aque-ous solution using pomegranate peel carbon: equilib-rium and kinetic studies. Int J Ind Chem. 4(1), 4-19.
- Ahmed M.J., Theydan S.K., 2012. Physical and chemical characteristics of activated carbon prepared by pyrolysis of chemically treated date stones and its ability to adsorb organics. Powder Technol. 229, 237-245.
- Sahu J., Acharya J., Meikap B., 2010. Optimiza-tion of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology. Bioresource Technol. 101(6), 1974-1982.
- Okoniewska E., Lach J., Kacprzak M., Neczaj E., 2007. The removal of manganese, iron and ammonium notrigen on impregnated activated carbon.Dealination. 206 (1-3), 251-258.
- Jusoh A., Cheng W.H., Low W.M., Noraini A., MegatMohd Noor M.J., 2005. Study on removal of iron and manganese in groundwater by granular acti-vated carbon. Dealination. 182 (1-3), 347-353.
- Javanbakht M., Mohammadi S., Akbari-Adergani B., 2012. Synthesis and application of molecularly imprinted polymers for solid-phase extraction of dipyridamole from complex biological fluids.Journal LiqChromatogr.R.T. 35, 2669-2684.
- Pourfarzib M., Shekarchi M., Rastegar H., Akbari-adergani B., Mehramizi A. Dinarvand R., 2015. Mo-lecularly imprinted nanoparticles prepared by miniemulsion polymerization as a sorbent for selective extraction and purification of efavirenz from human serum and urine. J Chromatogr B. 974, 1-8.
- Pourfarzib M., Rastegar H., Akbari-Adergani B., Mehramizi A., Dinarvand R., Shekarchi M., 2015. Water compatible molecularly imprinted polymer as a sorbent for selective extraction and purification of adefovir from human serum and urine. J Sep Sci. 38, 1755-1762.
- Attaran A.M., Mohammadi N., Javanbakht M., Akbari-adergani B., 2014. Molecularly imprinted
- solid-phase extraction for selective trace analysis of trifluoperazine. J Chromatogr Sci. 52, 730-738.
- Moein M.M., El-baqqali A., Javanbakht M.,Karimi M., Akbari-adergani B., Abdel-rehim M., 2014.On-line detection of hippuric acid by microextraction with a molecularly-imprinted polysulfonemembrane sorbent and liquid chromatog-raphy-tandem mass spectrometry. J Chromatogr A. 1372, 55-62.
- Moein M.M., Javanbakht M., Karimi M., Akbari-adergani B., Abdel-Rehim M., 2015. A new strategy for surface modification of polysulfone membrane by in situ imprinted sol-gel method for the selective sepa-ration and screening of L-Tyrosine as a lung cancer biomarker.Analyst. 140, 1939-1946.
- Akbari-adergani B., Sadeghian G.H., Alimohammadi A., Esfandiari Z., 2017. Integrated photografted molecularly imprinted polymers with a cellulose
- acetate membrane for the extraction of melamine from dry milk before HPLC analysis. J Sep Sci. 40, 1361-1368.
- Taghavi M., Zazouli M.A., Yousefi Z., Akbari-adergani B., 2015. Kinetic and isotherm modeling of Cd(II) adsorption by L-cysteine functionalized multi-walled carbon nanotubes as adsorbent. Environ.Monit Assess. 187(11), 682-691.
- Guo Y., Qi J., Yang S., Yu K., Wang Z., Xu H., 2003. Adsorption of Cr (VI) on micro-and mesoporous rice husk-based active carbon. Mate Chem Phys. 78(1), 132-137.
- Ayrilmis N., Kaymakci A., Ozdemir F., 2013. Physical, mechanical, and thermal properties of poly-propylene composites filled with walnut shell flour. J IndEng Chem. 19(3), 908-914.
- Pirzadeh K., Ghoreyshi A.A.,2014. Phenol removal from aqueous phase by adsorption on activated carbon prepared from paper mill sludge. Desalination and Water Treatment.52, 34-36
- Gorzin F., Ghoreyshi A.A., 2013. Synthesis of a new low-cost activated carbon from activated sludge for the removal of Cr (VI) from aqueous solution: Equilibrium, kinetics, thermodynamics and desorption studies. Korean. J Chem Eng. 30(8), 1594-1602.
- Hu C., Sedghi S., Madani S.H., Silvestre-AlberoA., Sakamoto H., Kwong P., 2014. Control of the pore size distribution and its spatial homogeneity in particulate activated carbon.Carbon. 78, 113-120.