The effects of Xylose monosaccharide on Water Buffalo (Bubalus bubalis) epididymal sperm kinetic parameters at 37 ˚ C
Subject Areas : Theriogenology and Reproductive Medicine
Nemat Arshadi
1
,
Keivan Abdy
2
1 - Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
2 - Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
Keywords: sperm, Buffalo, CASA, Xylose, TCM 199,
Abstract :
The objective of this study was to test xylose monosaccharide sugar on buffalo epididymal sperm kinetic parameters at 37 ˚ C, of up to 24 h. Testes with epididymis were collected after death at urmia industrial abattoir, testes were recovered within 30 min after slaughter. Paired cauda epididymides from each mature buffalo bull were sliced and sperms transferred into tubes containing tissue culture medium (TCM, 199) with 10% bovine serum albumin at 37 ˚ C. Different levels of xylose (0,1, 3, 5, 10, 15 mM) were added into TCM-199 containing sperms (40-50×106 sperm/ml), with 10%, bovine serum albumin. Then samples were incubated at 37 ˚ C. Thereafter, at 1,3,5,7,10,12 and 24 hours incubation times, kinetics of at least 1 thousand sperms per samples were recorded with computer assisted sperm analysis (CASA). Results revealed that the motility parameters till 12 hrs did not show any significant differences between groups, actually no significant difference was observed between control and xylose groups means .But at 24 h, after incubation the means of xylose levels were lower than that of the control specially at 15 mM of xylose level the difference with control was significant (p<0.05). It is concluded that the xylose at high levels significantly reduce the kinetic parameters of buffalo bull epididymal sperm, especially at 24 h after incubation. Therefore, the usage of xylose sugar and at the high levels is not recommended for the energy supply of Buffalo bull epididymal sperm at 37 ˚ C incubation in TCM 199.
[1] Neglia G, de Nicola D, Esposito L, Salzano A, D’Occhio MJ, Fatone G. Reproductive management in buffalo by artificial insemination. Theriogenology, 2020; 150: 166-72. doi:10.1016/j.theriogenology.2020.01.016
[2] Samad M. A systematic review of research findings on buffalo health and production published during the last six decades in Bangladesh. Journal of Veterinary Medical and One Health Research, 2020; 2: 1-62.
doi: 10.36111/jvmohr.2020.2(1).0016
[3] Borghese A. Buffalo production and research. REU technical series, 2005(67).
[4] Ahmad K, Chaudhry R. Cryopreservation of buffalo semen. Veterinary Record, 1980; 106(9): 199-201.
doi: 10.1136/vr.106.9.199
[5] Gamal A, Shahba MI, El-Sheshtawy RI. Freez ability of buffalo semen with TRIS extender enriched with disaccharides (trehalose or sucrose) and different glycerol concentrations. Asian Pacific Journal of Reproduction, 2016; 5(5): 416-18.
doi: 10.1016/j.apjr.2016.07.007
[6] Herold F, Aurich J, Gerber D. Epididymal sperm from the African buffalo (Syncerus caffer) can be frozen successfully with AndroMed and with Triladyl™ but the addition of bovine seminal plasma is detrimental. Theriogenology, 2004; 61(4): 715-24.
doi:10.1016/S0093-691X(03)00256-5
[7] Akhter S, Ansari MS, Rakha BA, Andrabi SMH, Iqbal S, Ullah N. Cryopreservation of buffalo (Bubalus bubalis) semen in Bioxcell® extender. Theriogenology, 2010; 74(6): 951-5.
doi:10.1016/j.theriogenology.2010.04.024
[8] Sansone G, Nastri MJF, Fabbrocini A. Storage of buffalo (Bubalus bubalis) semen. Animal Reproduction Science, 2000; 62(1–3): 55-76.
doi:10.1016/s0378-4320(00)00154-8
[9] Amann RP, Griel LC. Fertility of bovine spermatozoa from rete testis cauda epididymidis, and ejaculated semen. Journal of Dairy Science, 1974; 57:212-19.
doi:10.3168/jds.S0022-0302(74)84862-9
[10] Barker C, Gandier J. Pregnancy in a mare resulting from frozen epididymal spermatozoa. Canadian Journal of Comparative Medicine and Veterinary Science, 1957; 21(2): 47
[11] Barati F, Mahabady M, Mohammadi G. Cryopreservation of in situ cool stored buffalo (Bubalus bubalis) epididymal sperm. Iranian Journal of Veterinary Research, 2009; 10: 339-45.
[12] Blash S, Melican D, Gavin W. Cryopreservation of epididymal sperm obtained at necropsy from goats. Theriogenology, 2000; 54(6): 899-905. doi:10.1016/s0093-691x(00)00400-3
[13] Monteiro GA, Papa FO, Zahn FS, Dellaqua JA, Melo CM, Maziero RRD, Guasti PN. Cryopreservation and fertility of ejaculated and epididymal stallion sperm. Animal Reproduction Science, 2011; 127(3–4): 197-201.
doi:10.1016/j.anireprosci.2011.08.002
[14] Wani NA. In vitro embryo production in camel (Camelus dromedarius) from in vitro matured oocytes fertilized with epididymal spermatozoa stored at 4°C. Animal Reproduction Science, 2009; 111(1): 69-79.
doi:10.1016/j.anireprosci.2008.02.005
[15] Herrick JR, Bartels P, Krisher RL. Post thaw evaluation of in vitro function of epididymal spermatozoa from four species of free-ranging African bovids. Biology of Reproduction, 2004; 71(3): 948-58. doi:10.1095/biolreprod.103.026831
[16] Golshahi K., Aramli MS, Nazari RM, Habibi E. Disaccharide supplementation of extenders is an effective means of improving the cryopreservation of semen in sturgeon. Aquaculture, 2018; 486: 261-65. doi:10.1016/j.aquaculture.2017.12.045
[17] Sarıözkan S, Bucak MN, Canturk F, Özdamar S, Yay A, Tuncer PB, Caner Y. The effects of different sugars on motility, morphology and DNA damage during the liquid storage of rat epididymal sperm at 4 degrees C. Cryobiology, 2012; 65(2):93-97. doi:10.1016/j.cryobiol.2012.05.00
[18] Garrote G, Domı́nguez H, Parajó JC. Generation of xylose solutions from Eucalyptus globulus wood by autohydrolysis–posthydrolysis processes: posthydrolysis kinetics. Bioresource Technology, 2001; 79(2): 155-64. doi:10.1016/S0960-8524(01)00044-X
[19] Yildiz C, Kaya K, Aksoy M, Tekeli T. Influence of sugar supplementation of the extender on motility, viability and acrosomal integrity of dog spermatozoa during freezing. Theriogenology, 2000. 54(4): 579-85.
doi:10.1016/s0093-691x(00)00373-3
[20] Polge C, Soltys M. Protective action of some neutral solutes during the freezing of bull spermatozoa and trypanosomes. Recent Research in Freezing and Drying, Blackwell, Oxford, 1960: p. 87-100.
[21] Uçan U, Küçük N, Ahmad E, Naseer Z, Aksoy M, Serin I, Ceylan A. Effect of different sugars supplemented to the extender in combination with cholesterol-loaded cyclodextrin (CLC) on post-thaw quality of ram spermatozoa. Small Ruminant Research, 2016; 136: 243-46. doi:10.1016/j.smallrumres.2016.01.021
[22] Amann RP, Waberski D. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology, 2014; 81(1): 5-17.e3.doi:10.1016/j.theriogenology.2013.09.004
[23] Van der Horst G. Computer Aided Sperm Analysis (CASA) in domestic animals: Current status, three D tracking and flagellar analysis. Animal Reproduction Science, 2020; 106350. doi:10.1016/j.anireprosci.2020.106350
[24] Boe-Hansen GB, Satake N. An update on boar semen assessments by flow cytometry and CASA. Theriogenology, 2019; 137: 93-103.doi:10.1016/j.theriogenology.2019.05.043
[25] Ibănescu I, Leiding C, Ciornei ŞG, Roșca P, Sfartz I, Drugociu D. Differences in CASA output according to the chamber type when analyzing frozen-thawed bull sperm. Animal Reproduction Science, 2016; 166: 72-9. doi:10.1016/j.anireprosci.2016.01.005
[26] Dziekońska A, Niedźwiecka E, Niklewska ME, Koziorowska-Gilun M, Kordan. Viability longevity and quality of epididymal sperm stored in the liquid state of European red deer (Cervus elaphus elaphus). Animal Reproduction Science, 2020; 213: 106269. doi:10.1016/j.anireprosci.2019.106269
[27] Vilela CG, Marquez JM, Graham JK, Barfield JP. Cryopreservation of bison epididymal sperm: A strategy for improving post-thaw quality when collecting sperm in field conditions. Theriogenology, 2017; 89: 155-61.doi:10.1016/j.theriogenology.2016.09.044
[28] Martínez-Fresneda L, Castaño C, Bóveda P, Tesfaye D, Schellander K, Santiago-Moreno J, García-Vázquez FA. Epididymal and ejaculated sperm differ on their response to the cryopreservation and capacitation processes in mouflon (Ovis musimon). Scientific Reports, 2019; 9(1): 15659. doi:10.1038/s41598-019-52057-0
[29] Chatiza FP, Bartels P, Nedambale TL, Wagenaar GM. Computer assisted sperm analysis of motility patterns of post thawed epididymal spermatozoa of springbok (Antidorcas marsupialis), impala (Aepyceros melampus), and blesbok (Damaliscus dorcus phillipsi) incubated under conditions supporting domestic cattle in vitro fertilization. Theriogenology, 2012; 78(2):402-14.
doi:10.1016/j.theriogenology.2012.02.020
[30] Williams AC, Ford WCL. The role of glucose in supporting motility and capacitation in human spermatozoa. Journal of Andrology, 2001; 22(4): 680-95.doi:10.1002/j.19394640.2001.tb02229.x
[31] Shiva Shankar Reddy N, Jagan Mohanarao G, Atreja S. Effects of adding taurine and trehalose to a tris-based egg yolk extender on buffalo (Bubalus bubalis) sperm quality following cryopreservation. Animal Reproduction Science, 2010; 119(3): 183-90. doi:10.1016/j.anireprosci.2010.01.012
[32] Malo C, Gil L, Gonzalez N, Martínez F, Cano R, De Blas I, Espinosa E. Comparison between cysteine and rosemary (Rosmarinus officinalis). Cryobiology, 2010; 61(1): 142-47.
doi: 10.1016/j.cryobiol.2010.06.009
[33] Najafi A, Zhandi M, Towhidi A, Sharafi M, Sharif AA, Motlagh MK, Martinez-Pastor F. Trehalose and glycerol have a dose-dependent synergistic effect on the post-thawing quality of ram semen cryopreserved in a soybean lecithin-based extender. Cryobiology, 2013; doi:10.1016/j.cryobiol.2013.03.002
[34] Fernández-Santos MR, Martínez-Pastor F, García-Macías V, Esteso MC, Soler AJ, De Paz P, Garde JJ. Extender osmolality and sugar supplementation exert a complex effect on the cryopreservation of Iberian red deer (Cervus elaphus hispanicus) epididymal spermatozoa. Theriogenology, 2007; 67(4): 738-53.doi:10.1016/j.theriogenology.2006.10.005
[35] Lapwood K, Martin I. The Use of Monosaccharides, Disaccharides, and Trisaccharides in Synthetic Diluents for the Storage of Ram Spermatozoa At 37°C and 5°C. Australian Journal of Biological Sciences, 1966; 19(4): 655-72. doi:10.1071/BI9660655
[36] Naing SW, Wahid H, Azam KM, Rosnina Y, Zuki AB, Kazhal S, San MM. Effect of sugars on characteristics of Boer goat semen after cryopreservation. Animal Reproduction Science, 2010; 122: 23-8. doi:10.1016/j.anireprosci.2010.06.006
[37] Pojprasath T, Lohachit C, Techakumphu M, Stout T, Tharasanit T. Improved cryopreservability of stallion sperm using a sorbitol-based freezing extender. Theriogenology, 2011. 75(9): 1742-49.doi:10.1016/j.theriogenology.2011.01.014
[38] Retamal CA, Dias AJB, Brasil FC, Lanzana FR, López ML. Alpha-mannosidase activity in stallion epididymal fluid and spermatozoa. Theriogenology, 2012; 78(2): 252-62.doi:10.1016/j.theriogenology.2012.02.033
[39] Rigau T, Farré M, Ballester J, Mogas T, Pena A, Rodríguez-Gil JE. Effects of glucose and fructose on motility patterns of dog spermatozoa from fresh ejaculates. Theriogenology, 2001; 56(5): 801-15. doi:10.1016/S0093-691X(01)00609-4