A numerical study of supercritical water oxidation of phenol
Subject Areas : Journal of the Iranian Chemical ResearchMajid Bazargan 1 , Maryam Akbari 2
1 - Mechanical Engineering Department, K. N. Toosi University of Technology, Mollasadra Ave., Tehran
1999143344, Iran
2 - Mechanical Engineering Department, K. N. Toosi University of Technology, Mollasadra Ave., Tehran
1999143344, Iran
Keywords:
Abstract :
[1] P. Kritzer, Chem. Eng. J. 83 (2001) 207–214.
[2] PhD thesis, M.A. Paradowska, Tailored chemical oxidation techniques for the abatement of bio-toxic
organic wastewater pollutants: An experimental study, Dissertation presented to obtain the degree:
Doctor in Chemical Engineering of the Rovira i Virgili University, (2004).
[3] T.D. Thornton, P.E. Savage, J. Supercritical Fluids 3 (1990) 240–248.
[4] M. Koo, W.K. Lee, C.H. Lee, Chem. Eng. Sci. 52 (1997) 1201–1214.
[5] S.F. Rice, R.R. Steeper, J. Hazardous Materials 59 (1998) 261–278.
[6] A. Yermakova, P. E. Mikenin, V. I. Anikeev, Theoretical Foundations of Chem. Eng. 40 (2006) 168–
174.
[7] I. V. Pérez, S. Rogak, R. Branion, J. Supercritical Fluids 30 (2004) 71–87.
[8] J. Yu, P. E. Savage, Ind. Eng. Chem. Res. 37 (1998) 2-10.
[9] R. Lachance, J. Paschkewitz, J. DiNaro, J.W. Tester, J. Supercritical Fluids 16 (1999) 133–147.
[10] S. Bianchetta, L Li, E. F. Gloyna, Ind. Eng. Chem. Res. 38 (1999) 2902-2910.
[11] J. H. Lee, N. R. Foster, J. Ind. Eng. Chemistry, 5 (1999) 116-122.
[12] C. Aymonier, P. Beslin, C. Jolivalt, F. Cansell, J. Supercritical Fluids 17 (2000) 45–54.
[13] J.L. DiNaro, J.W. Tester, K.C. Swallow, J.B. Howard, AIChE J. 46 (11) (2000) 2274–2284.
[14] M. J. Cocero, E. Alonso, R. Torıo, D. Vallelado, T. Sanz, and F. Fdz-Polanco, Ind. Eng. Chem. Res.
39 (2000) 4652-4657.
[15] F. Chen, J. Chen, S. Wu and S. Rong, China-Japan International Academic Symposium
Environmental Problem in Chinese Iron-Steelmaking Industries and Effective Technology Transfer, 6
(2000) 115-122.
M. Akbari & et al. / J. Iran. Chem. Res. 4 (2011) 187-198
198
[16] X. Qi, Y.Y. Zhuang, Y.Ca Yuan, W.X. Gu, J. Hazardous Materials B90 (2002) 51–62.
[17] D. Klingler, J. Berg, H. Vogel, J. Supercritical Fluids 43 (2007) 112–119.
[18] C.H. Lee, K.-Y. Hwang, H.C. Lee, J.H. In, Theories and Applications of Chem. Eng. 9 (2003) 1845-
1848.
[19] M. Okazaki, T. Funazukuri, 6th International Symposium on SUPERCRITICAL FLUIDS, 2003.
[20] H.C. Lee, J.H. In, K.Y. Hwang, C.H. Lee, Ind. Eng. Chem. Res. 43 (2004) 3223-3227.
[21] H.C. Lee, J.H. In, J. Supercritical Fluids 36 (2005) 59–69.
[22] V. I. Anikeev, A. Ermakova, M. Goto, Kinetics and Catalysis, 46 (2005) 821–825.
[23] Y. Matsumura, T. Minowa, B. Potic, S. R.A. Kersten, W. Prins, W. P.M. van Swaaij, B. van de Beld,
D. C. Elliott, G. G. Neuenschwander, A. Kruse, M. J. Antal Jr., Biomass and Bioenergy 29 (2005)
269–292.
[24] I. M. Svishchev, A. Plugatyr, J. Supercritical Fluids 37 (2006) 94–101
[25] O. O. Sogut, M. Akgun, J. Supercritical Fluids 43 (2007) 106–111
[26] V. Bambang, K. Jae-Duck, J. Environmental Sci. 19 (2007) 513–522.
[27] C. Shuang-jun, L. Yu-cun, J. Environmental Sci. 19 (2007) 1430–1435.
[28] Y. H. Shin, N. C. Shin, B. Veriansyah, J. Kim, Y.W. Lee, J. Hazardous Materials 163 (2009) 1142–
1147.
[29] B. Cui, F. Cuia, G. Jing, S. Xu,W. Huo, S. Liu, J. Hazardous Materials 165 (2009) 511–517.
[30] D. Bo, F.S. Zhang, L. Zhao, J. Hazardous Materials 170 (2009) 66–71.
[31] J.H. Lee, S.H Son, T. T. Viet, C.H. Lee, Korean J. Chem. Eng. 26 (2009) 398-402.
[32] T. Yoshida, Y. Matsumura, Ind. Eng. Chem. Res. 48 (2009) 8381–8386.
[33] N. Liu, H.y. Cui, D. Yao, Process Safety and Environmental Protection 87 (2009) 387–394.
[34] Y. Guo, S. Wang, Y. Gong, D. Xu, X. Tang, H. Ma, J. Hazardous Materials 180 (2010) 137–144.
[35] G. Weijin, D. Xuejun, Waste Management 30 (2010) 2103-2107.
[36] M. Krajnc, J. Levec, AICHE J. 42 (1996) 1977.
[37] R. Li, P. E. Savage, D. szmukler, AIChE J. 39 (1993) 178-187.
[38] J. R. Portela, E. Nebot, E. M. de la Ossa, J. Supercritical Fluids 21 (2001) 135–145.
[39] B. M. Lee, B. Veriansyah, S.H. Kim, J.D. Kim, Y.W. Lee, Korean J. Chem. Eng. 22 (2005) 579-584.
[40] F. Vogel, J. L. D. Blanchard, P. A. Marrone, S. F. Rice, P. A. Webley, W. A. Peters, K. A. Smith, J.
W. Tester, J. Supercritical Fluids 34 (2005) 249–286.
[41] K. M. Benjamin, P. E. Savage, Ind. Eng. Chem. Res. 44 (2005) 9785-9793.
[42] L. DS Pinto, L M F. dos Santos, R. CD Santos, B. Al-Duri, J. Chem. Technol. Biotechnol. 81 (2006)
919–926.
[43] J. A. Onwudili, P. T. Williams, J. Supercritical Fluids 43 (2007) 81–90.
[44] K. Koido, Y. Ishida, K. Kumabe, K. Matsumoto, T. Hasegawa, J. Supercritical Fluids 55 (2010) 246-
251.
[45] M. Bazargan, D. Fraser, J. Heat Transfer 131 (2009)
[46] M. Bazargan, M. Mohseni, J. Supercritical Fluids, 51 (2009) 221-229.
[47] M. Bazargan, M. Mohseni, ASME J. Heat Transfer, 133 (2011)
[48] N. Zhou, A. Krishnan, F. Vogel, W. A. Peters, Advances in Environmental Research 4 (2000) 79-95.
[49] C. Narayanan, C. Frouzakis, K. Boulouchos, K. Prıkopsky, B.Wellig, P. Rudolf von Rohr, J.
Supercritical Fluids 46 (2008) 149–155.
[50] M. D. Bermejo, A. Martin, J. P.S. Queiroz, I. Bielsa, V. Rios, M. J. Cocero, Chem. Eng. J. 158
(2010) 431–440.
[51] P. Dutournie, J. Mercadier, J. Supercritical Fluids 35 (2005) 247–253.
[52] S. Vielcazals, J. Mercadier, F. Marias, D. Mate´os, M. Bottreau, F. Cansell, C. Marraud, AIChE J. 52
(2006) 818-825.
[53] A. Fourcault, B. Garcia-Jarana, J. Sanchez-Oneto, F. Marias, J.R. Portela, Chem. Eng. J. 152 (2009)
227–233.
[54] J.R. Portela, E. Nebot, E.M. de la Ossa, Chem. Eng. J. 81 (2001) 287-299.
[55] L. Li, P. Chen, E.F. Gloyna, Chemical oxidation: technology for the nineties, in: W. Eckenfelder, A.
Bowers, J. Roth (Eds.), Proceedings of the Third International Symposium on the Chemical
Oxidation: Technology for the Nineties, 1994.