Study response of maize (Zea mays L.) hybrids to drought stress using physiological and stress tolerance indices
Subject Areas : Journal of Plant Ecophysiologymohammad moradi 1 , Seyed Sajad Hosseini Falehi 2
1 - Department of Plant Breeding, Shoushtar Branch,, Islamic Azad University
2 - Islamic Azad University
Keywords: Maize, Biplot, RWC and Root weight,
Abstract :
Drought is the most important environmental stress in agriculture and improving yield maize under drought is a major goal of plant breeding. In order to evalutiaon 15 hybrids under normal and water stress regimes (irrigated after 90±5 and 135±5 mm evaporation from class A pan for normal and water stress conditions, respectively), a study was conducted at Dezful in Khuzestan Province, during 2014 growing seasons, using RCBD with three replications. The results of the variance analysis showed that differences among the genotypes, in terms of all indices and yield in normal and drought stress conditions were significant. Highly significant correlations were found between the grain yield and some physiological traits in drought stress condition, such as RWC and root weight, So these traits can be reliable criteria for the selection of tolerant genotypes with prospect to higher yields. Results of correlation between defferente drought tolerance indices with grain yield in both conditions (normal and water stress) showed that MP, GMP and STI were a successful index to select high yield and tolerante genotypes. Based on this indices and the results of the biplot diagram and cluster analysis the crosses SD/17×SD/15, SD/3×SD/17, CML×SD/3 and CML×SD/17 had the best drought tolerance and the crosses SD/10×SD/704, SD/15×SD/704 and SD/17×SD/10 were high sensitivity to drought and can be identified as the most sensitive hybrids to drought.
احمدی، ج.، ح. زینالیخانقاه، م. ع. رستمی و ر. چوگان. 1379. بررسی شاخصهای تحمل به خشکی با استفاده از روش بایپلات هیبریدهای ذرت دانهای، مجله علوم کشاورزی ایران. 31(4): 523-513.
اسدی، ع. ا.، م. ولیزاده، س. ا. محمدی و م. خدارحمی. 1398. تجزیه ژنتیکی پاسخ به تنش کمبود آب در صفات فیزیولوژیک در گندم. مجله پژوهشهای ژنتیک گیاهی. 24(3): 20-1.
چوکان، ر.، ع. حیدری، ع. محمدی و م. ح. حدادی. 1387. ارزیابی تحمل به خشکی در هیبریدهای ذرت دانهای با استفاده از شاخصهای تحمل به تنش خشکی. مجله نهال و بذر. جلد 24. شماره 3. 543 تا 562.
حیدری، ع.، ر. چوکان، ع. تشکری و ح. کلانتری. 1390. تأثیر سطوح مختلف خشکی بر عملکرد و و اجزای عملکرد هیبریدهای ذرت. نشریه آب و خاک( علوم و صنایع کشاورزی). 25(6). 1263 تا 1250.
سپهری، ع.، س. ع. م. مدرسثانوی، ب. قرهیاضی و ی. یمینی. 1381. تأثیر تنش آب و مقادیر مختلف نیتروژن بر مراحل رشد و نمو، عملکرد و اجزای عملکرد ذرت. مجله علوم زراعی ایران. 4()3. 196-184.
مقدم، ع. و م. ح. هادیزاده. 1381. عکسالعمل هیبریدهای ذرت و لاینهای والدی آنها به خشکی با استفاده از شاخصهای مختلف تحمل به تنش. مجله نهال بذر، 18(3). 255 تا 272.
Akhila, S. N., T. K. Abraham and D. S. Jaya. 2008. Studies on the changes in lipid peroxidation and antioxidants in drought stress induced cowpea (Vigna unguiculata L.) varieties. J. of Envir. Bio. 29(5): 689-691.
Antolin, M. C., J. Yoller and M. Sanchez-Diaz. 1995. Effects of temporary drought on nitrate-fed and nitrogen-fixing alfalfa plants. Plant Sci. 107, 159-165.
Andjelkovic, V., D. Ignjatovic-Micic, S. Mladenovic and J. Vancetovic. 2012. Implementation of maize gentic resources in drought tolerance and grain quality improvement at maize research institute.“ Zemun Polje”. Thiyrd International Scientific Smposium. 10.7251/AGSY1203429A. UDK 631. 147:633.15.
Bredemeier, C. 2005. Laser-induced chlorophyll fluorescence sensing as a tool for site-specific nitrogen fertilizer evaluation under controlled environmental and field conditions in wheat and maize. PhD. Thesis, Technical University of Munich, Germany.
Dedio, W. 1975. Water relations in wheat leaves as screening tests for drought resistance. Cana. J. of Plant Sci. 55: 369-378.
Draikewicz, M. 1994. Chlorophyllase occurrence functions, mechanism of action, effect of extra and internal factors. Photosynthesis, 30: 321-337.
Fernandez, G. C. 1992. Effective selection criteria for assessing plant stress tolerance. In: Proceedings of the Symposium of AVRDC, 13-16 Aug. Taiwan.
Fisher, R. A. and R. Maurer. 1978. Drought resistance in spring wheat cultivars. Grain yield responses. Aust. J. of Agri. Res. 29: 897-912.
Gaspar, T., T. Franck, B. Bisbis, C. Kevers, L. Jouve, J. F. Hausman and J. Dommes. 2002. Concepts in plant stress physiology. Application to plant tissue cultures. Plant Grow. Regul. 37: 263–285.
Ghorbani Javid, M., F. Moradi, Gh. A. Akbari and I. Allahdadi. 2006. The role of some metabolites on the osmotic adjustment mechanism in annual cutleaf medic (Medicago laciniata L. Mill) under drought stress. Iranian J. Crop Sci. 8(2), 90-105.
Golabadi, M., A. Arzani and S. A. M. Mirmohammdi Maibody. 2006. Assessment of drought tolerance in segregating population in durum wheat. African J. of Agric. Res. 1:5. 162-171.
Gregersen, P. L. and P. B. Holm. 2007. Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotecnology Journal, 5(1): 192-206.
Guseynova, I. M., Suleymanov, S. and J. A. Aliyev. 2006. Protein composition and native state of pigments of thylakoid membrane of Wheat genotypes differently tolerant to water stress. Biochemistry, 71: 223-228.
Hopkins, W. G. and N. P. A. Hopkins. 2004. Introduction to plant physiology. John Wiley & Sons Pub., New Jersey.
Jiang, Y. and B. Hung. 2001. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci. 41: 436-442.
Karimpour, M. 2019. The effect of drought stress on the chlorophyll content, chlorophyll fluorescence parameters and yield in the maize cultivars. World Essays Journal: 7 (1): 57-63,
Kafi, M., A. Borzoee, M. Salehi, A. Kamandi, A. Masoumi and J. Nabati. 2009. Physiology of enviromental stresses in plants (translated). Iranian Academic Center for Education, Culture and Research (ACECR) Press, Mashhad, Iran.
Khakwani, A. A., M. Dearin and M. Munir. 2011. Drought tolerance screening of wheat varieties by inducing water stress conditions. Songklanakarin. Journal of Science & Technology. 33: 135-142.
Kiani, M. 2013. Screening drought tolerant criteria in maize. Asian J. Agric. Rural Dev. 3(5): 290-295.
Kranner, I., R. P. Beckett, S. Wornik, M. Zorn and H. W. Pfeifhofer. 2002. Revival of a resurrection plant correlates with its antioxidant status. Plant J. 31: 13-24.
Kumar, R., J. Kaul, R. B. Dubey, A. Singod, G. K. Chikkappa, A. Manivannan and M. K. Debnath. 2015. Assessment of drought tolerance in maize (Zea mays L) based on different indices. SABRAO J. of Breedi. and Genet. 47 (3): 291-298.
Maggio, A., S. De-Pascale, C. Ruggiro and G. Barbieri. 2005. Physiological response of field-grown cabbage to salinitly and drought stress. Europ. J. Agron. 23:57-67.
Manivannan, P., C. Abdul Jaleel, B. Sankar, A. Kishorekumar, D. Somasundaram, G. M. A. Lakshmanan and R. Panneerselvam. 2007. Growth, Biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces. 59:141–149.
Naroui-Rad, M. R., M. Abdul-Kadir and M. R. Yusop. 2012. Genetic behaviour for plant capacity to produce chlorophyll in wheat (Triticum aestivum L) under drought stress. 6(3):415-420.
Oliviera-Neto C. F., A. K. Silva-Lobato, M. C. Goncalves-Vidigal, R. C. L. Costa, Santos. B. G. Filho, G. A. R. Alves, W. J. M. Silva-Maia, F. J. R. Cruz, H. K. B. Neres and M. J. Santos Lopes. 2009. Carbon compounds and chlorophyll contents in sorghum submitted to water deficit during three growth stages. Sci. and Techno.7: 588-593.
Pessarkli, M. 1999. Hand Book of Plant and Crop Stress. Marcel Dekker Inc, New York, USA.
Rosielli, A., and J. Hamblin. 1981. Theoritical aspects of selection for yield in stress and non- stress environment. Crop Sci. 21: 485-493.
Roth, J. A., I. A. Ciampitti, and T. J. Vyn. 2013. Physiological evaluations of recent drought tolerant maize hybrids at varying stress levels. Agron. J. 105: 1129- 1141.
Safavi, M., S. Pourdad and A. Safavi. 2013. Evaluation of drought tolerance in Safflower (Carthamus tinctorius L.) under Non-Stress and Drought Stress Conditions. International J. of Advanced Bio. and Biom. Research, 9: 943-946.
Shafiq, S. Akram, N. A. and M. Ashraf. 2019. Assessment of physio biochemical indicadors for drought toleransce in different cultivars maize (Zea Mays L). Pak. J. Bot., 51(4): 1241-1247.
Sheteawi, S. A. and K. M. Tawfik. 2007. Interaction effect of some biofertilizers and irrigation water regime on Mungbean (Vigna radiate) growth and yield. J. of Applied Sci. Research 3(3): 251-262.
Shirani Rad, A. H. and A. Abbasian. 2011. Evaluation of drought tolerance in rapeseed genotypes under non stress and drought stress conditions. Not Bot Horti Agrobo. 39(2):164-171.
Silva, M. A., J. L. Jifon, J. A. G. Silva and V. Sharma. 2007. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Brazilian J. of Plant Physiology 19: 193-201
Slafer, G. A. and J. L. Araus. 1998. Keynote address: mproving wheat responses to abiotic stresses. 9th International Wheat Genetics Symposium, Saskatchewan, CA.
Sio-Se Mardeh, A., A. Ahmadi, K. Poustini and V. Mohammadi. 2006. Evaluation of drought resistance indices under various environmental conditions. Field Crops Research 98, 222-229.
Smith., S. and I. Smet. 2012. Phil. Trans. R. Soc Root system architecture: Insights from Arabidopsis and cereal crops. B. 365(1595): 1441-1452.
Tarahomi, G., Lahouti, M. and F. Abbasi. 2010. Effect of drought stress on variations of soluble sugar chlorophyll and potassium in salvia Leriifolia benth. Zanjan Islamic Azad University Journal of Biological Sciences, 3(2): 1-7.
Yadav, O. P. and S. K. Bathagar. 2001. Evaluation of indices for identification of pear millet cultivars adapted to stress and non-stress conditions. Field Crop Research 70: 201-208.
Yarnia, M., N. Arabifard, F. Rahimzadeh Khoei and P. Zandi. 2011. Evaluation of drought tolerance indices among some winter rapeseed cultivars. African J. of Biotech. 10(53): 10914-10922.
Ziyomo, C. and R. Bernardo. 2013. Drought tolerance in maize: Indirect selection through secondary traits versus genome-wide selection. Crop Sci. 53:1269–1275.
_||_