Long term trend analysis of changes in tomato (Lycopersicon esculentum) water use efficiency in the southern, southwest and central regions of Iran
Subject Areas : Journal of Plant EcophysiologyLeila Jafari 1 , Farzin Abdollahi 2 , Sara Asadi 3
1 - Faculty member of Horticulture Department, University of Hormozgan
2 - Faculty member of University of Hormozgan
3 - PhD in Agroecology
Keywords: Yield, water requirement, Mann-Kendall test, Boundary-line, Pettitt test,
Abstract :
In order to improve water utilization management the trends of changes in crop water requirement (CWR), yield, cultivation area and water use efficiency (WUE) of tomato in some regions of Iran evaluated in a 23-year long term (1990-2013) by measuring evapotranspiration (ET) and crop coefficient (Kc). Highest (1137 mm) and lowest (642 mm) CWR of tomato observed in Yazd and Shahrekord cities respectively. Unlike Dezful and Shiraz, this characteristic has a significant increasing trend with a slope of 5.6 mm per year in Fasa. Furthermore, unlike Fasa, tomato yield in Ahvaz, Bandar Abbas, Shahrekord and Yazd has a significant increasing trend. The maximum (49.5 ton/ha) and minimum (19.4 ton/ha) tomato yield and also the maximum (5.6 Kg/m3) and minimum (2.4 Kg/m3) WUE was observed in Fasa and Kerman, respectively. However, the highest reduction (0.1 kg/m3) and highest increase (0.07 kg/m3) in WUE per year was obtained in Ahvaz and Fasa respectively. The results of this study showed that the WUE has a linear relationship with tomato yield. So that the water consumption per 100 kilograms of tomatoes yields per unit of area increased 0.1 kg/m3. While there was no logical relationship between WUE and CWR. By drawing the boundary-line, which represents potential yield against the CWR, high fluctuation of tomato yield in a steady interval of water requirement was estimated. Overall, the lack of a relationship between the WUE and CWR in the range of 600 to 1000 mm was due to yield gap caused by malpractice in the farms.
بذرافشان، الف.، ز. گرکانی نژاد مشیزی. 1397. تحلیل تغییرات زمانی و مکانی آب مجازی در محصول گوجه فرنگی در استان هرمزگان تحت تغییرات اقلیم. نشریه آب و خاک (علوم و صنایع کشاورزی). جلد 22، شماره 1، 29-43.
خرمیان، م. 1394. اثر سطوح مختلف آبیاری قطرهای تیپ بر عملکرد و کیفیت گوجهفرنگی در شمال استان خوزستان. علوم و مهندسی آبیاری. جلد 38، شماره 2: 161-170.
سبزی پرور، ع. ا.، م. شادمانی. 1390. ﺗﺤﻠﻴﻞ روﻧﺪ ﺗﺒﺨﻴﺮ و ﺗﻌﺮق ﻣﺮﺟﻊ ﺑﺎ اﺳﺘﻔﺎده از آزﻣﻮن ﻣﻦ- ﻛﻨﺪال و اﺳﭙﻴﺮﻣﻦ در ﻣﻨﺎﻃﻖ ﺧﺸﻚ اﻳﺮان. نشریه آب و خاک (علوم و صنایع کشاورزی). جلد 25، شماره 4: 823-834.
شاهرخنیا، م. ع.، ل. جوکار، م. رخشنده رو. 1395. بررسی تنش آبی با استفاده از شاخصهای دمای برگ و رطوبت خاک بر عملکرد و بهرهوری مصرف آب گوجهفرنگی نشایی. فصلنامه علمی پژوهشی مهندسی آبیاری و آب. جلد 6، شماره 26: 97-111.
شیرغلامی، ه.، ب. قهرمان. 1384. بررسی روند تغییرات دمای متوسط سالانه در ایران. مجله علوم و فنون کشاورزی و منابع طبیعی. جلد 9، شماره 1: 9-23.
عبدالهی، ف.، ل. جعفری، س. اسدی. 1398. مقایسه نیاز آبی مزارع گوجهفرنگی (Solanum lycopersicum) استان هرمزگان با سایر مناطق جنوبی ایران با استفاده از آنالیز سری زمانی. بومشناسی کشاورزی، جلد 12. doi: 10.22067/jag.v12i4.77267.
کوچکی، ع.، م. نصیری محلاتی، س. اسدی و ح. زارع. 1398. ارزیابی و پهنهبندی کارایی مصرف آب در استان خراسان رضوی. بوم شناسی کشاورزی. doi: 10.22067/jag.v1i1.61172.
Allen, R. G. 2003. Crop Coefficients. Stewart, B.A., and T.A Howell (eds.), Encyclopedia of Water Science. Marcel Dekker Publishers, New York. P. 87-90.
Allen, R. G., L. S. Pereira, D. Raes and M. Smith. 1998. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 56(97): e156.
Araya, A., L. Stroosnijder, G. Girmay and S. D. Keesstra. 2011. Crop coefficient, yield response to water stress and water productivity of teff (Eragrostis tef (Zucc.). Agric Water Manag. 98:775-783.
Awadia, A. A. and A. M. Abdalla. 2019. Effect of Salinity and NPK Fertilizer on the Total Soluble Solids (TSS) and N, P and K in Tomato Plants (lycoperisicone sculentum L). Parameters. 3(2):38-42.
Coyago-Cruz, E., A.J. Meléndez-Martínez, A. Moriana, I.F. Girón, M.J. Martín-Palomo, A. Galindo, D. López-Pérez, A. Torrecillas, E. Beltrán-Sinchiguano and M. Corell. 2019. Yield response to regulated deficit irrigation of greenhouse cherry tomatoes. Agri. Water manage. 213: 212–221.
Fang Sang, Y., Z. Wang and C. H. Liu. 2014. Comparison of the MK test and EMD method for trend identification in hydrological time Series. J Hydrol. 510:293-298.
FAO. 2017. Food and Agriculture Organization of the United Nations.
Fereres, E., and M. A. Soriano. 2007. Deficit irrigation for reducing agricultural water use. J Exp Bot. 58:147-159.
Ghosh, P. K., M. C. Manna, K. K. Bandyopadhyay, A. K. Tripathi, R. H. Wanjari, K. M. Hati, A. K. Misra, C. L. Acharya and A. Subba Rao. 2006. Interspecific Interaction and Nutrient Use in Soybean/Sorghum Intercropping System. Agron J. 98:1097-1108.
Hamed, K. 2007. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J Hydrol. 349:350-363.
Huo, Z., X. Dai, S. Feng, S. Kang and G. Huang. 2013. Effect of climate change on reference evapotranspiration and aridity index in arid region of China. J. Hydrol. 492: 24–34.
Igbadun, H. E., A. K. P. R. Tarimo, B. A. Salim and H. F. Mahoo. 2007. Evaluation of selected crop water production functions for an irrigated maize crop. Agric Water Manag. 94:1–10.
Kendall, M. G. 1962. Rank Correlation Methods. Hafner Publishing Company: New York.
Koocheki, A. M. Nassiri Mahallati, H. Zare and S. Asadi. 2016. Effect of Temperature on Crop Water Use Efficiency: Case Study in the Northeast of Iran. Tropentag, September, Vienna, Austria. 18-21.
Li, Y.L., J.Y. Cui, T. H. Zhang and H. L. Zhao. 2003. Measurement of evapotranspiration of irrigated spring wheatand maize in a semi-arid region of North China. Agric Water Manag. 61:1-12.
Liu, W. Z., D. J. Hunsaker, Y. S. Li, X. Q. Xie and G. W. Wall. 2002. Interrelations of yield, evapotranspiration, and water use efficiency from marginal analysis of water production functions. Agric Water Manag. 56:143-151.
Livada, I., A. Synnefa, S. Haddad, R. Paolini, S. Garshasbi, G. Ulpiani, F. Fiorito, K. Vassilakopoulou, P. Osmond and M. Santamouris. 2019. Time series analysis of ambient air-temperature during the period 1970–2016 over Sydney, Australia. Sci. Total Environ. 648:1627–1638.
Lopes, C. A., A. C. Ávila, A. Reis, A. Inouenagata, A. M. QuezadoDuval, G. P. Henz, J. M. Charchar, L. S. Boiteux, L. B. Giordano and P. C.T. Melo. 2005. Doenças do tomateiro. 2.ed, Brasília: Embrapa Hortaliças. 151p.
Love, D., S. Uhlenbrook, S. Twomlow and P. V. D. Zaag. 2010. Changing hydroclimatic and discharge patterns in the northern Limpopo Basin, Zimbabwe. Water SA., 36(3):335-350.
Mann, H. B. 1945. Non parametric tests again trend. Econometrica 13:245–259.
Milne, A. E., R. B. Ferguson and R. M. Lark. 2006a. Estimating a boundary line model for a biological response by maximum likelihood. Ann. Appl. Biol. 149:223-234.
Mu, X., L. Zhang, T. R. McVicar, B. Chille and P. Gau. 2007. Analysis of the impact of conservation measures on stream flow regime in catchments of the Loess Plateau, China. Hydrol Processes. 21(16):2124-2134.
Oweis, T. and A. Hachum. 2009. Supplemental irrigation for improved rainfed agriculture in WANA region. In: Wani, S.P., Rockstrom, J., Oweis, T. (eds.). Rainfed agriculture: Unlocking the potential. Comprehensive Assessment of Water Management in Agriculture Series 7, CABI, London, UK, pp.182-196.
Pettitt, A. N. 1979. A non-parametric approach to the change-point problem. App. Stat. 28(2):126–135.
Richards, R. A. 2006. Physiological traits used in the breeding of new cultivars for water scarce environments. Agric Water Manag. 80:197-211.
Sadras, V. 2015. Yield gap analysis of field crops: Methods and case studies. Food and Agriculture Organization of the United Nations.
Sadras, V. O. and D. Rodriguez. 2007. The limit to wheat water use efficiency in eastern Australia. II. Influence of rainfall patterns. Aust. J. Agric. Res. 58:657-669.
Sadras, V. O. and J. F. Angus. 2006. Benchmarking water use efficiency of rainfed wheat in dry environments. Aust. J. Agric. Res. 57:847-856.
Sadras, V. O., P. Grassini and P. Steduto. 2012. Status of water use efficiency of main crops. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW) Background Thematic Rep (F.A.O.). Thematic Report No. 7, 41 pp.
Webb, R.A. 1972. Use of boundary line in the analysis of biological data. J. Hort. Sci. 47:309–319.
WMO. 2012. Agrometeorlogy of some selected crops. In Guide to Agricultural Meteorological Practices (GAMP) (2010 ed., pp. 1–128). Geneva: Chair Publications Board.
Yang, J., L. Qin, X. Mei, C. Yan, J. U. Hui and J. Xu. 2013. Spatiotemporal Characteristics of Reference Evapotranspiration and Its Sensitivity Coefficients to Climate Factors in Huang-Huai-Hai Plain, China. J. Integr. Agric. 12(2):2280–2291.
Yea, Q., X. Yang, S. Dai, G. Chen, Y. Lie and C. Zhang. 2015. Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China. Agric. Water Manag. 159:35–44.
Zhang, W., Y. Yan, J. Zheng, L. Li, X. Dong and H. Cai. 2009. Temporal and spatial variability of annual extreme water level in the Pearl River Delta region, China. Glob. Planet. Change. 69:35-47.
Zhang, X., Y. Ren, Z. Y. Yin, Z. Lin and D. Zheng. 2009. Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971-2004. J. Geophys. Res. Atmos. 114: D15105.
_||_