Genetic Diversity of Different Agronomic Traits in Rice Genotypes (Oryza sativa L.)
Subject Areas : Journal of Plant EcophysiologyNasim Ranjkesh 1 , Morteza sam deliri 2 , pouria mazloum 3 , Amirabbas mousavi 4 , valiollah rameeh 5
1 - Dept. of Agronomy & Crops Breeding,Faculty of Agriculture, Islamic Azad University, Chalous Branch,Chalous, Iran.
2 - Dept. of Agronomy & Crops Breeding,Faculty of Agriculture, Islamic Azad University, Chalous Branch,Chalous, Iran.
3 - Associate prof., Islamic Azad University, Chalous Branch, Faculty of Agriculture, Dept. of Agronomy & Crops Breeding, Chalous, Iran.
4 - Dept. of Agronomy & crops Breeding, Faculty of Agriculture,Islamic Azad University, Chalous Branch, Chalous, Iran
5 - Association professor, Agronomic and Horticulture Crops Research Department, Mazandaran
Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran
Keywords: Grain yield, grouping, Quantitative traits, partial component analysis, baiplat,
Abstract :
Rice is one of the most important strategic products that is considered to be the main food of the world. In this regard, an experiment was conducted with 30 native and modified rice genotypes in a randomized complete block design at research farm of Sari University of Agricultural Sciences and Natural Resources with four replications in 2016-2017. The studied traits were plant height, length of panicles, number of effective tillers, total number of grains, number of unfilled grains, number of filled grains, 1000-grain weight, biological yield, grain yield, harvest index, chlorophyll index and growth period. The results of analysis of variance showed that genotypes have a significant difference in terms of traits, which indicates the existence of genetic variation among genotypes. The results of mean comparisons showed that the highest mean total number of grains and number of filled grains in the cluster belonged to the genotype of the Keshvari. The results of principal components analysis showed that the first five principal components accounted for 78.050% of the total variation. The cluster analysis by Unweighted Pair Group Method Arithmetic (UPGMA) method and with the euclidean distance criterion for studied traits, genotypes studied were divided into five groups.
ابوذری گزافرودی، ا.، ر. هنرنژاد، و م. ح. فتوکیان. 1387. بررسی تنوع ژنتیکی ارقام برنج با استفاده از دادههای صفات مورفولوژیکی، مجله پژوهش و سازندگی، جلد 21، شماره 1 (پی آیند 78 در زراعت و باغبانی): 117-110.
شاهسواری، ع. 1389. ارزیابی لاینهای امیدبخش برنج بر اساس شاخصهای مورفولوژی، فیزیولوژی و اجزای عملکرد. دانشگاه علوم کشاورزی و منابع طبیعی ساری، پایاننامه کارشناسی ارشد زراعت.
شیری، م. و ت. بهرامپور، 1394. تجزیه اثر متقابل ژنوتیپ در محیط با استفاده از روش GGE بای پلات در هیبریدهای ذرت دانهای تحت شرایط مختلف آبیاری. تحقیقات غلات، 1(5): 83-94.
مظهری، م. 1383. بررسی تنوع ژنتیکی ارقام مختلف برنج بر اساس خصوصیات مورفولوژیکی، پایاننامه کارشناسی ارشد، دانشکده علوم کشاورزی دانشگاه گیلان.
مصطفوی، م.، س. حسینیامینی، ص. و م. فیروزی.1393. بررسی پایداری عملکرد دانه لاینها و ارقام برنج با استفاده از روش امی (تأثیرات اصلی افزایشی و تأثیرات متقابل ضربپذیر). علوم گیاهان زراعی ایران. 45(3): 445-452.
مجیدیمهر، ا.، و خوشچهره، ح. 1396. بررسی ژنوتیپهای مختلف برنج با استفاده از تجزیه و تحلیل چند متغیره. مجله علمی پژوهشی اکوفیزیولوژی گیاهی. 30: 128-118.
Anis, G., A. EL-Sabagh, A. Ghareb, and I. EL-Rewainy. 2016. Evaluation of promising lines in rice (Oryza sativa L.) to agronomic and genetic performance under Egyptian conditions. International Journal of Agronomy and Agricultural Research. 3: 52-57.
Anyaoha, Ch., F. Adegbehingbe, U. Uba, B. Popoola, V. Gracen, S. Mande, E. Onotugoma, and M. Fofana. 2018. Genetic Diversity of Selected Upland Rice Genoty pes (Oryza sativa L.) for Grain Yield and Related Traits. International Journal of Plant & Soil Science, 22(5):1-9.
Hussien, A., E. Tavakol, D.S. Horner, M. Muńoz-Amatriaín, G. J. Muehlbauer, and L. Rossini. 2014. Genetics of tillering in rice and barley. The Plant Genome, 7(1).
Honarnejhad, R. 2002. Study of correlation between some quantitative traits and grain yield in rice (Oryza sativa L.) using path analysis. Iranian Journal of Crop Sciences 4(1): 25-35. [In Persian with English Abstract].
Katsura, K., Y. Tsujimoto, K.I. Matsushimac, W. Dogbed, and J.I. Sakagami. 2016. Genotype-by-environment interaction analysis of rice (Oryza spp) yield in a floodplain ecosystem in West Africa. European Journal of Agronomy, 73: 152–159.
Kishore, N. S., T. Srinivas, U. Nagabhushanam, M. Pallavi, and S. K. Sameera. 2015. Genetic variability, correlation and path analysis for yield and yield components in promising rice (Oryza sativa L.) genotypes. Bangladesh Journal of Agriculture, 13(1): 99-108.
Kandhola, S. S. and D.V.S. Panwar. 1999. Genetic divergence in rice, Annals of biology Ludhiana 15:135-39.
Lafitte, H. R., Z. K. Li, C. H. M. Vijayakumar, Y. M. Gao, Y. Shi, J. L. Xu, B. Y. Fu, S. B. Yu, A. J. Ali, J. Domingo, R. Maghirang, R.Torres, and D. Mackill.2006. Improvement of rice drought tolerance through backcross breeding:Evalution of donors and selection in drought nurseries. Field Crops Research 97: 77-86.
Lanceras, J. C., P. Griengrai. J. Boonrat. and T . Theerayut. 2004. Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiology 1: 384-399.
Lestari, A. P., B. Abdollah, A. Junaedi, and H. Aswidinnoor. 2010. Yield stability and adaptability of aromatic new plant type (NPT) rice lines. Indonesian Journal Agronomy, 38(3): 199-204.
Liping, D. and W. Jianfei. 1999. Analysis of main agronomic characters for japonica rice from taiho lake region, Journal of Nanjing Agricultural University 22:3 1-4.
Meng, T. Y., H. H. Wei, L. I. Chao, Q. G. Dai, X. U. Ke, Z. Y. Huo, and H. C. Zhang. 2016. Morphological and physiological traits of large-panicle rice varieties with high filled-grain percentage. Journal of Integrative Agriculture, 15(8): 1751-1762.
Mohaddesi, A. 2002. Study of planting data, nitrogen fertilizer and plant density on yield and yield components in rice. M.Sc. Thesis. Tehran University. 90 pp. [In Persian with English Abstract].
Navea, I. P., M. S. Dwiyanti, J. Park, B. Kim, S. Lee, X. Huang, and J. H. Chin. 2017. Identification of quantitative trait loci for panicle length and yield related traits under different water and P application conditions in tropical region in rice (Oryza sativa L.). Euphytica, 213(2): 37.
Pasha, M., F. Paknezhad, M. R. Ardakani, A. Mohadasi, and S.Bakhshipoor. 2011. Study of genetic diversity of rice genotypes based of morphological characteristics. Proceedings of 14th National Rice conference sari. February 28.
Singh, S. K., A. Kumar, P. K. Bhati, S. Y. Dhuari, and A. Sharma. 2016. Stability analysis for grain yield and its component traits in rice. Orya. 53(2): 187- 195.
Yan, W. 2001. GGEbiplot A Windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agron. J. 93: 1111-1118
Zhang, S., J. Hu, C. Yang, H. Liu, F. Yang, J. Zhou, B. K. Samson, C. Boualaphanh, L. Huang, G. Huang, J. Zhang, W. Huang, D. Tao, D. Harnpichitvitaya, L. Wade, and F. Hu. 2017. Genotype by environment interactions for grain yield of perennial rice derivatives (Oryza sativa L./Oryza longistaminata) in southern China and Laos. Field Crops Research. 207: 62–70.
_||_