Anisotropic Charged Stellar Models
Subject Areas : International Journal of Mathematical Modelling & Computations
1 - Department of Mathematical Science, Faculty of Applied Sciences, South Eastern University of Sri Lanka, Sri Lanka
Keywords: Einstein-Maxwell system, exact solutions, relativistic astrophysics, anisotropic charged star,
Abstract :
A new class of exact solutions of the Einstein-Maxwell system is found in closed form for a static spherically symmetric anisotropic star in the presence of an electric field by generalizing earlier approaches. The field equations are integrated by specifying one of the gravitational potentials, the anisotropic factor and electric field which are physically reasonable. We demonstrate that it is possible to obtain a more general class of solutions to the Einstein-Maxwell system in the form of series with anisotropic matter. For specific parameter values it is possible to find new exact models for the Einstein-Maxwell system in terms of elementary functions from the general series solution. Our results contain particular solutions found previously including models of Thirukkanesh and Maharaj (2009) and Komathiraj and Maharaj (2007) charged relativistic models.
[1] H. Adibi and A. Taherian, Numerical Solution of the most general nonlinear fredholm
integro-differential-difference equations by using Taylor polynomial approach, International Journal of
Mathematical Modelling & Computations, 2 (4) (2012) 283–298.
[2] H. Bondi, Anisotropic spheres in general relativity, Monthly Notices of the Royal Astronomical Society, 259
(2) (1992) 365–368, doi:10.1093/mnras/259.2.365.
[3] R. L. Bowers and E. P. T. Liang, Anisotropic spheres in general relativity, The Astrophysical Journal, 188
(1974) 657–665.
[4] K. Dev and M. Gliser, Anisotropic stars: Exact solutions, General Relativity and Gravitation, 34 (2002) 1793–
1818.
[5] R. Dube, Heat transfer in three-dimensional flow along a porous plate, International Journal of Mathematical
Modelling Computations, 9 (1) (2019) 61–69.
[6] M. C. Durgapal and R. Bannerji, New analytical stellar model in general relativity, Physical Review D, 27 (2)
(1983) 328–331.
[7] M. Esculpi and E. Aloma, Conformal anisotropic relativistic charged fluid spheres with a linear equation of
state, European Physical Journal C, 67 (2010) 521–532.
[8] T. Feroze and A. Siddiqui, Charged anisotropic matter with quadratic equation of state, General Relativity and
Gravitation, 43 (2011) 1025–1035.
[9] T. Harko and M. K. Mak, Anisotropic relativistic stellar models, Annalen der Physik, 514 (1) (2002) 3–13.
[10] L. Herrera and J. P. de Leon, Anisotropic spheres admitting a one‐parameter group of conformal motions,
Journal of mathematical physics, 26 (8) (1985) 2018, doi:10.1063/1.526872.
[11] L. Herrera and N. O. Santos, Geodesics in Lewis space–time, Journal of Mathematical Physics, 39 (7) (1998)
3817–3827, doi:10.1063/1.532470.
[12] M. Kalam, A. A. Usmani, F. Rahaman, M. Hossein, I. Karar and R. Sharma, A relativistic model for strange
quark star, International Journal of Theoretical Physics, 52 (2013) 3319–3328.
[13] M. Karami, Using PG elements for solving Fredholm integro-differential equations, International Journal of
Mathematical Modelling & Computations, 4 (4) (2014) 331–339.
[14] K. Komathiraj, Analytical models for quark stars with the MIT Bag model equation of state, World Scientific
News, 153 (2) (2021) 205–215.
[15] K. Komathiraj and S. D. Maharaj, Analytical models for quark stars, International Journal of Modern Physics
D, 16 (11) (2007) 1803–1811, doi:10.1142/S0218271807011103.
[16] K. Komathiraj and S. D. Maharaj, Classes of exact Einstein-Maxwell solutions, General Relativity and
Gravitation, 39 (2007) 2079–2093.
[17] K. Komathiraj and R. Sharma, A family of solution to the Einstein-Maxwell system of equations describing
relativistic charged fluid spheres, Pramana - Journal of Physics, 90 (5) (2018) 68.
[18] K. Komathiraj and R. Sharma, Electromagnetic and anisotropic extension of a plethora of well- known
solutions describing relativistic compact objects, Astrophysics and Space Science, 365 (2020) 181,
doi:10.1007/s10509-020-03895-2.60 K. Komathiraj/���2�, 12 -01 (2022) 49-60.
[19] K. Komathiraj, R. Sharma, S. Das and S. D. Maharj, Generalized Durgapal–Fuloria relativistic stellar models,
Journal of Astrophysics and Astronomy, 40 (2019) 37, doi:10.1007/s12036-019-9605-2.
[20] S. D. Maharaj, J. M. Sunzu and S. Ray, Some simple models for quark stars, European Physical Journal Plus,
129 (2014) 3, doi:10.1140/epjp/i2014-14003-9.
[21] M. K. Mak and T. Harko, Anisotropic stars in general relativity, Proceedings of the Royal Society of London.
Series A: Mathematical, Physical and Engineering Sciences, 459 (2030) (2003) 393–408,
doi:10.1098/rspa.2002.1014.
[22] M. K. Mak and T. Harko, Quark stars admitting a one-parameter group of conformal motions, International
Journal of Modern Physics D, 13 (1) (2004) 149, doi:10.1142/S0218271804004451.
[23] M. Malaver, Charged anisotropic matter with modified Tolman IV potential, Open Science Journal of Modern
Physics, 2 (5) (2015) 65–71.
[24] M. Malaver, Generalized nonsingular model for compact stars electrically charged, World Scientific News, 92
(2) (2018) 327–339.
[25] M. Malaver, Quark star model with charge distributions, Open Science Journal of Modern Physics, 1 (1) (2014)
6–11, doi:10.48550/arXiv.1407.1936.
[26] M. Malaver, Some new models of anisotropic compact stars with quadratic equation of state, World Scientific
News, 109 (2018) 180–194.
[27] M. Malaver and HD. Kasmaei, Charged anisotropic matter with modified Chaplygin equation of state,
International Journal of Physics: Study and Research, 3 (1) (2021) 83–90, doi:10.18689/ijpsr-1000113.
[28] M. Malaver and HD. Kasmaei, Classes of charged anisotropic stars with polytropic equation of state, IJRRAS
46 (1) (2021).
[29] M. Malaver and H. D. Kasmaei, Analytical models for quark stars with Van der Waals modified equation of
state, International Journal of Astrophysics and Space Science, 7 (5) (2019) 49–58,
doi:10.11648/j.ijass.20190705.11.
[30] M. Malaver and H. D. Kasmaei, Relativistic stellar models with quadratic equation of state, International
Journal of Mathematical Modelling & Computations, 10 (2) (2020) 111–124.
[31] P. K. Pandey and S. S. Jaboobb, An efficient method for the numerical solution of Helmholtz type general two
points boundary value problems in ODEs, International Journal of Mathematical Modelling & Computations, 6
(4) (2016) 291–299.
[32] N. Pant, N. Pradhan and M. Malaver, Anisotropic fluid star model in isotropic coordinates, International
Journal of Astrophysics and Space Science. Special Issue: Compact Objects in General Relativity, 3 (2015) 1–
5.
[33] A. I. Sokolov, Phase transitions in a superfluid neutron liquid, Soviet physics, JETP, 52 (1980) 575–576.
[34] M. Sotoodeh and M. A. Fariborzi Araghi, A new modified homotopy perturbation method for solving linear
second-order Fredholm integro-differential equations, International Journal of Mathematical Modelling &
Computations, 2 (4) (2012) 299–308.
[35] J. M. Sunzu, S. D. Maharaj and S. Ray, Quark star model with charged anisotropic matter, Astrophysics and
Space Science, 354 (2014) 517–524.
[36] F. Tello-Ortiz, M. Malaver, A. Rincón and Y. Gomez-Leyton, Relativistic anisotropic fluid spheres satisfying a
non-linear equation of state, The European Physical Journal C, 80 (2020) 371.
[37] S. Thirukkanesh and S. D. Maharaj, Some new static charged spheres, Nonlinear Analysis: Real World
Applications, 10 (6) (2009) 3396–3403, doi:10.1016/j.nonrwa.2008.09.025.
[38] S. Thirukkanesh and F. C. Ragel, Exact anisotropic sphere with polytropic equation of state, Pramana-Journal
of physics,78 (2012) 687–696.
[39] S. Thirukkanesh and F. C. Ragel, Strange star model with Tolmann IV type potential, Astrophysics and Space
Science, 352 (2014) 743–749.
[40] V. V. Usov, Electric fields at the quark surface of strange stars in the color- flavor locked phase, Physical
review D, 70 (6) (2004) 067301, doi:10.1103/PhysRevD.70.067301.