Presenting the Forecasting Model of Bitcoin Return Using the hybrid Method of Deep Learning - Signal Decomposition Algorithm (CEEMD-DL)
Subject Areas :
Financial Economics
sakineh sayyadi nezhad
1
,
Ali Esmaeil Zadeh
2
,
Mohammad Reza Rostami
3
1 - Department of Financial Management,, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 - Associate Professor in Accounting and head of faculty of Economics and Accounting , Central Tehran Branch , Azad University , Iran
3 - Department of Management, Faculty of Social Sciences and Economics, Alzahra University, Tehran, Iran
Received: 2022-12-24
Accepted : 2023-02-25
Published : 2023-03-21
Keywords:
Cryptocurrencies,
Complete Integrated Empirical Mode Decomposition (CEEMD),
Long-Short-Term Memory (LSTM),
Keywords: Deep Learning Models (DL),
Convolutional Neural Network (CNN). JEL Classification: E37,
C61,
C45,
G18,
Abstract :
Abstract
With the increasing popularity and widespread use of cryptocurrencies, the creation and development of methods for predicting price movements in this field has attracted a lot of attention. In between, recent developments in deep learning (DL) models with structures such as long-short-term memory (LSTM) and convolutional neural network (CNN) have made improvements in the analysis of this type of data. Another approach that can be effective in the analysis of cryptocurrencies time series is the decomposition through algorithms such as complete integrated empirical mode decomposition (CEEMD). Considering the importance of forecasting in the cryptocurrencies field, in this research, by combining deep learning models and complete integrated empirical mode decomposition (CEEMD), The hybrid CEEMD-DL(LSTM) model has been used to forecast the bitcoin return (as the most popular currency). In this regard, the daily data of the total index of the Tehran Stock Exchange was used in the period of 2013/01/01 – 2022/05/28 and the results obtained were compared with the results of competing models based on efficiency measurement criteria. Based on the obtained results, the use of the introduced model (CEEMD-DL(LSTM)) has increased the efficiency and accuracy of bitcoin return forecasting. Accordingly, the use of this model in this field is suggested.
References:
- فهرست منابع
امامی، کریم و امام وردی، قدرت الله. (1388). بررسی امکان پیش بینی شاخص قیمت سهام در بازار سرمایه ایران و مقایسه توان پیش بینی مدلهای خطی و غیرخطی. اقتصاد مالی، 3(7)، 83-56.
باباجانی، جعفر، تقوا، محمدرضا، بولو، قاسم، عبدالهی، محسن. (1398). مقاله پژوهشی: پیش بینی قیمت سهام در بورس تهران با استفاده از شبکه عصبی بازگشتی بهینه شده با الگوریتم کلونی زنبور عسل مصنوعی. راهبرد مدیریت مالی 7(2). 195-228.
باغستانی، علی اکبر، یزدانی، سعید و احمدیان، مجید. (1394). کاربرد رهیافت شبکه عصبی در پیشبینی قیمت کنجاله سویا در بورس کالای ایران. اقتصاد مالی، 9(33)، 14-1.
بختیاران، محمد جواد، ذوالفقاری، مهدی. (1400). طراحی مدلی جهت پیش بینی بازده بیتکوین (با تاکید بر مدلهای ترکیبی شبکه عصبی کانولوشنی و بازگشتی و مدلهای با حافظه بلندمدت). مهندسی مالی و مدیریت اوراق بهادار. 12(47)، 187-161.
بشیری، میثم، پاریاب، سیدحسین. (1399). پیش بینی قیمت بیت کوین با استفاده از الگوریتم های یادگیری ماشین، اقتصاد کاربردی،10(34)، 13-1.
صالحی فر, محمد. (1398) بررسی رفتار بازده و ریسک بیت کوین درمقایسه با بازارهای طلا، ارز و بورس با رویکرد مدل های GJR-GARCH و گارچ آستانه. مهندسی مالی و مدیریت اوراق بهادار, 10(40), 152-168.
کاویانی، میثم، فخرحسینی، سید فخرالدین، دستیار، فاطمه. (1399). مروری بر اهمیت و چرایی پیشبینی بازده سهام: با تأکید بر متغیرهای کلان اقتصادی. حسابداری و منافع اجتماعی، 10(2)، 131-113.
محمدشریفی، ابوصالح، خلیلی دامغانی، کاوه، عبدی، فرشید، سردار، سهیلا. (1400). پیش بینی قیمت بیت کوین با استفاده از مدل ترکیبی ARIMA و یادگیری عمیق. مطالعات مدیریت صنعتی, 19(61), 125-146.
مریم دولو ، تکتم حیدری (1396). پیش بینی شاخص سهام با استفاده از ترکیب شبکه عصبی مصنوعی و مدل های فرا ابتکاری جستجوی هارمونی و الگوریتم ژنتیک، نشریه اقتصاد مالی،11(40)، 23-1
_||_
Babajani, J., Taghva, M., Blue, G., Abdollahi, M. (2019). Forecasting Stock Prices in Tehran Stock Exchange Using Recurrent Neural Network Optimized by Artificial Bee Colony Algorithm. Financial Management Strategy, 7(2), 195-228. (in Persian)
Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A., & Felten, E. W. (2015). Sok: Research perspectives and challenges for bitcoin and cryptocurrencies, In 2015 IEEE Symposium on Security and Privacy (pp. 104-121). IEEE.
Cavalcante, R. C., Brasileiro, R. C., Souza, V. L. P., Nobrega, J. P., & Oliveira, A. L. I. (2016). Computational Intelligence and Financial Markets: A Survey and Future Directions. Expert Systems with Applications, 55, 194–211.
Karakoyun, E. S., & Cibikdiken, A. O. (2018). Comparison of arima time series model and lstm deep learning algorithm for bitcoin price forecasting, In The 13th multidisciplinary academic conference in prague 2018 (the 13th mac 2018) (pp. 171-180).
kaviani, M., Fakhrehosseini, S., dastyar, F. (2020). An Overview of the Importance and Why the Stock Return Prediction, with Emphasis on Macroeconomic Variables. Journal of Accounting and Social Interests, 10(2), 113-131. (in Persian)
Lin, Y., Yan, Y., Xu, J., Liao, Y., & Ma, F. (2021). Forecasting stock index price using the CEEMDAN-LSTM model. The North American Journal of Economics and Finance, 57, 101421.
Patrick Jaquart, David Dann, Christof Weinhardt (2021). Short-term bitcoin market prediction via machine learning, The Journal of Finance and Data Science, Volume 7, 45-66.
Sarafraz, S., Sefati, F. and Ghiasvand, A. (2016). Predicting stock prices with hybrid market indices using a fuzzy neural model. International Conference on Modern Research in Management, Economics and Accounting. (in Persian)
Shengao Zhang, Mengze Li, Chunxiao Yan (2022). The Empirical Analysis of Bitcoin Price Prediction Based on Deep Learning Integration Method, Computational Intelligence and Neuroscience, vol. 2022, Article ID 1265837, 9 pages.
Sin, E., & Wang, L. (2017). “Bitcoin price prediction using ensembles of neural networks”, In 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) (pp. 666-671). IEEE.
Yamak, P. T., Yujian, L., & Gadosey, P. K. (2019). A Comparison between ARIMA, LSTM, and GRU for Time Series Forecasting, In Proceedings of the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence (pp. 49-55).
Yan, B., & Aasma, M. (2020). A novel deep learning framework: Prediction and analysis of financial time series using CEEMD and LSTM. Expert systems with applications, 159, 113609.
Zarei, G., Mohamadiyan, R., Nayeri Hazeri, H., Mashokouh ajirlou, M. (2018). The Comparison of Fuzzy Neural Network Methods with Wavelet Fuzzy Neural Network in Predicting Stock Prices of Banks Accepted in Tehran Stock Exchange. Financial Management Strategy, 6(3), 109-138. (in Persian)