Study of the frequency tetA, tetB, tetC, cat3 and floR genes and their role in multidrug resistance in Salmonella enteritidis isolated from traditional cheeses
Subject Areas : MycologyElham Doosti 1 , Abbas Doosti 2 , Ebrahim Rahimi 3
1 - MS.c., Department of Microbiology, Shahrekord branch, Islamic Azad University, Shahrekord, Iran.
2 - Associate Professor, Biotechnology Research Center, Shahrekord branch, Islamic Azad University, Shahrekord, Iran.
3 - Associate Professor, Department of Food Hygiene, Faculty of Veterinary Medicine, Shahrekord branch, Islamic Azad University, Shahrekord, Iran.
Keywords: Salmonella enteritidis, Multidrug resistance, Traditional cheese,
Abstract :
Background & Objectives: Salmonella is a member of Enterobacteriaceae. Dairy products, such as cheese, are one of the environmental sources of these bacteria. This study was performed to isolate Salmonella enteritidis collected from traditional cheese produced in Chaharmahal va Bakhtiari province, and also to study the frequency of associated gene with drug resistance. Materials & Methods: In this cross-sectional study, 100 samples of traditional cheese were collected from Chaharmahal va Bakhtiari province. Bacterial culture and biochemical tests were used to isolate and identify Salmonella strains. PCR assay was used for final diagnosis of Salmonella genus and direct detection of S. Enteritidis, and also to study the frequency of tetA, tetB, tetC, cat3 and floR genes. The Kirby-Bauer disk diffusion method was used to perform the antibiogram tests. Results: Overall, 32 (32%) cases out of 100 samples were detected as Salmonella contamination. Of these, 10% (31/25 cases) of samples belonged to S. enteritidis. The highest frequency of antibiotic gene resistant belonged to tetC (70%). The highest antibiotic resistance (100%) was related to tetracycline and the highest sensitivity (100%) was related to cefotaxime. Conclusion: The results of present study showed that S. enteritidis carry high frequencies of antibiotic resistance genes. The presence of high resistance to chloramphenicol and tetracycline can be because of the presence of these genes.
1. Stevens M, Humphrey T, Maskell D. Molecular insights into farm animal and zoonotic Salmonella infections. Phil Trans R Sac B. 2009; 364: 2709-2723.
2. Hammad AM, Ishida Y, Shimamoto T. Prevalence and molecular characterization of ampicillin-resistant Enterobacteriaceae isolated from traditional Egyptian Domiati cheese. J Food Protect. 2009; 3: 624-630.
3. Van Boxstaela S, Dierickc K, Van Huffela X, Uyttendaeleb M, Berkvensd D, Hermane L, Bertrandf S, Wildemauweg C, Catryh B, Butayei P, Imberechtsi H. Comparison of antimicrobial resistance patterns and phage types of Salmonella typhimurium isolated from pigs, pork and humans in Belgium between 2001 and 2006. Food Res Int. 2012; 45(2): 913-918.
4. Murray P, Rosenthal K, A Falr M. Microbiology Murray. Khosravi with publishing Dibaj. ISBN 978-600-5523-77-5, 2009.
5. Heithoff DM, Shimp WR, lau PW, Badie G, Enioutina EY, Daynes RA, Barbara RA, Byrne A, House J, Mahan MJ. Human Salmonella clinical isolates distinct from those of animal origin. Appl Environ Microbiol. 2008; 10: 1757–1766.
6. Clark MA, Barret EL. The phs gene and hydrogen sulfide production by Salmonella typhimurium. J Bacteriol. 1987; 169(6): 2391–2397.
7. Escobar D, Clark S, Ganesan V, Repiso L, Waller J, Harte F. High-pressure homogenization of raw and pasteurized milk modifies the yield, composition, and texture of queso fresco cheese. J Dairy Sci. 2011; 94(3): 1201-1210.
8. Nisiotoua A, Chorianopoulosb NG, Gounadakic A, Panagouc EZ, Nychasc GJE. Effect of wine-based marinades on the behavior of Salmonella typhimurium and background flora in beef fillets. Int J Food Microbiol. 2013; 164(3): 12-19.
9. Johny AK, Hoagland T, Venkitanarayanan K. Effect of sub inhibitory concentrations of plant-derived molecules in increasing the sensitivity of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 to antibiotics. Foodborne Pathog Dis. 2010; 7(10): 1165-1170.
10. Doosti A, Mokhtari-Farsani A. Study of the frequency of Clostridium difficile tcdA, tcdB, cdtA and cdtB genes in faces of Calves in south west of Iran. Ann Clin Microbiol Antimicrob. 2014; 13(21): 1-6.
11. Sharifzadeh A, Doosti A, Mokhtari-Farsani A. Study of multiple-drug resistance transfer factors from isolated E. coli of poultry farms to Salmonella typhimurium. Adv Life Sci. 2014; 4(3): 174-177.
12. Galan JE, Zhou D. Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc Natl Acad Sci. 2000; 97: 8754-8761.
13. Foley SL, Lynne AM. Food animal-associated Salmonella challenges: Pathogenicity and antimicrobial resistance. J Animal Sci. 2007; 86: 173-187.
14. Mazrek J, Pusz P, Bok E. Stosik M, Chudzik K. The phenotypic and genotypic characteristics of antibiotic resistance in Escherichia coli populations isolated from farm animals with different exposure to antimicrobial agents. Polish J Microbiol. 2013; 62 (2): 173-179.
15. Polotsky Y, Dragunsky E, Khavin T. Morphologic evaluation of the pathogenesis of bacterial enteric infection. Crit Rev Microbiol. 1994; 20(3): 161-208.
16. Centers for disease control. outbreak of Salmonella serotype enteritidis infection associated with easting shell eggs. United States, 1999-2001.MorbM Ortal Wkly Rep. 2003; 51:1149-1152.
17. Ahmeda AM, Shimamotob T, Shimamoto T. Characterization of integrons and resistance genes in multidrug-resistant Salmonella enterica isolated from meat and dairy products in Egypt. Int J Food Microbiol. 2014; 189: 39-44.
18. Li H, Xu H, Zhou Y, Zhang J, Long C, Li S, Chen S, Zhou JM, Shao F. The phosphothreonine lyase activity of a bacterial type III effector family. Science. 2007; 315: 1000-1003.
19. Coynault C, Robbe-Saule V, Popoff MY, Norel F. Growth phase and SpvR regulation of transcription of Salmonella typhimurium spv ABCD virulence genes. Microb Pathog. 1992; 13: 133-143.
20. Gentle A, Anastasopoulos F, Mc Brien NA. High resolution semi quantitative real time PCR without the use of a standard curve. Bio Techniques. 2001; 31: 502-508.
21. Aoust JY. Pathogenicity of foodborne Salmonella. Int J Food Microbiol. 1991; 2: 17-40.
22. Akiyama T, Presedo J, Khan A. The tetA gene decreases tigecycline sensitivity of Salmonella enterica isolates. Int J Antimicrob Agents. 2013:42(2): 133-140.
23. Van Boxstael S, Dierick K, Van Huffel X, Uyttendaele M, Berkvens D, Herman L, Bertrand S, Wildemauwe C, Catry B, Butaye P, Imberechts H. Comparison of antimicrobial resistance patterns and phage types of Salmonella typhimurium isolated from pigs, pork and humans in Belgium between 2001 and 2006. Food Res Int. 2012; 45: 913-918.
_||_
1. Stevens M, Humphrey T, Maskell D. Molecular insights into farm animal and zoonotic Salmonella infections. Phil Trans R Sac B. 2009; 364: 2709-2723.
2. Hammad AM, Ishida Y, Shimamoto T. Prevalence and molecular characterization of ampicillin-resistant Enterobacteriaceae isolated from traditional Egyptian Domiati cheese. J Food Protect. 2009; 3: 624-630.
3. Van Boxstaela S, Dierickc K, Van Huffela X, Uyttendaeleb M, Berkvensd D, Hermane L, Bertrandf S, Wildemauweg C, Catryh B, Butayei P, Imberechtsi H. Comparison of antimicrobial resistance patterns and phage types of Salmonella typhimurium isolated from pigs, pork and humans in Belgium between 2001 and 2006. Food Res Int. 2012; 45(2): 913-918.
4. Murray P, Rosenthal K, A Falr M. Microbiology Murray. Khosravi with publishing Dibaj. ISBN 978-600-5523-77-5, 2009.
5. Heithoff DM, Shimp WR, lau PW, Badie G, Enioutina EY, Daynes RA, Barbara RA, Byrne A, House J, Mahan MJ. Human Salmonella clinical isolates distinct from those of animal origin. Appl Environ Microbiol. 2008; 10: 1757–1766.
6. Clark MA, Barret EL. The phs gene and hydrogen sulfide production by Salmonella typhimurium. J Bacteriol. 1987; 169(6): 2391–2397.
7. Escobar D, Clark S, Ganesan V, Repiso L, Waller J, Harte F. High-pressure homogenization of raw and pasteurized milk modifies the yield, composition, and texture of queso fresco cheese. J Dairy Sci. 2011; 94(3): 1201-1210.
8. Nisiotoua A, Chorianopoulosb NG, Gounadakic A, Panagouc EZ, Nychasc GJE. Effect of wine-based marinades on the behavior of Salmonella typhimurium and background flora in beef fillets. Int J Food Microbiol. 2013; 164(3): 12-19.
9. Johny AK, Hoagland T, Venkitanarayanan K. Effect of sub inhibitory concentrations of plant-derived molecules in increasing the sensitivity of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 to antibiotics. Foodborne Pathog Dis. 2010; 7(10): 1165-1170.
10. Doosti A, Mokhtari-Farsani A. Study of the frequency of Clostridium difficile tcdA, tcdB, cdtA and cdtB genes in faces of Calves in south west of Iran. Ann Clin Microbiol Antimicrob. 2014; 13(21): 1-6.
11. Sharifzadeh A, Doosti A, Mokhtari-Farsani A. Study of multiple-drug resistance transfer factors from isolated E. coli of poultry farms to Salmonella typhimurium. Adv Life Sci. 2014; 4(3): 174-177.
12. Galan JE, Zhou D. Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc Natl Acad Sci. 2000; 97: 8754-8761.
13. Foley SL, Lynne AM. Food animal-associated Salmonella challenges: Pathogenicity and antimicrobial resistance. J Animal Sci. 2007; 86: 173-187.
14. Mazrek J, Pusz P, Bok E. Stosik M, Chudzik K. The phenotypic and genotypic characteristics of antibiotic resistance in Escherichia coli populations isolated from farm animals with different exposure to antimicrobial agents. Polish J Microbiol. 2013; 62 (2): 173-179.
15. Polotsky Y, Dragunsky E, Khavin T. Morphologic evaluation of the pathogenesis of bacterial enteric infection. Crit Rev Microbiol. 1994; 20(3): 161-208.
16. Centers for disease control. outbreak of Salmonella serotype enteritidis infection associated with easting shell eggs. United States, 1999-2001.MorbM Ortal Wkly Rep. 2003; 51:1149-1152.
17. Ahmeda AM, Shimamotob T, Shimamoto T. Characterization of integrons and resistance genes in multidrug-resistant Salmonella enterica isolated from meat and dairy products in Egypt. Int J Food Microbiol. 2014; 189: 39-44.
18. Li H, Xu H, Zhou Y, Zhang J, Long C, Li S, Chen S, Zhou JM, Shao F. The phosphothreonine lyase activity of a bacterial type III effector family. Science. 2007; 315: 1000-1003.
19. Coynault C, Robbe-Saule V, Popoff MY, Norel F. Growth phase and SpvR regulation of transcription of Salmonella typhimurium spv ABCD virulence genes. Microb Pathog. 1992; 13: 133-143.
20. Gentle A, Anastasopoulos F, Mc Brien NA. High resolution semi quantitative real time PCR without the use of a standard curve. Bio Techniques. 2001; 31: 502-508.
21. Aoust JY. Pathogenicity of foodborne Salmonella. Int J Food Microbiol. 1991; 2: 17-40.
22. Akiyama T, Presedo J, Khan A. The tetA gene decreases tigecycline sensitivity of Salmonella enterica isolates. Int J Antimicrob Agents. 2013:42(2): 133-140.
23. Van Boxstael S, Dierick K, Van Huffel X, Uyttendaele M, Berkvens D, Herman L, Bertrand S, Wildemauwe C, Catry B, Butaye P, Imberechts H. Comparison of antimicrobial resistance patterns and phage types of Salmonella typhimurium isolated from pigs, pork and humans in Belgium between 2001 and 2006. Food Res Int. 2012; 45: 913-918.