Green synthesis of Ag nanoparticles on the calcite support using Salix aegyptiaca leaf extract and its catalytic activity investigation in removal of dyes
Subject Areas :akbar Rostami 1 , leila rostami 2
1 - Assistant Prof. of Inorganic Chemistry, Faculty of Science, University of Qom, Qom, Iran
2 - M.Sc. Student in Chemistry Department, Faculty of Science, University of Qom, Qom, Iran
Keywords: nanocomposite, Green synthesis, Ag Nanoparticles, Mineral supports, Removal of dyes,
Abstract :
In this work, Ag nanoparticles (Ag NPs) were immobilized on the surface of mineral calcite (CaCO3) using leaf extract of pussy willow (Salix aegyptiaca) as reducing and stabilizing agent. Conversion of Ag+ to Ag NPs was carried out within a few minutes at room temperature. The calcite and its Ag nanocomposite (Ag NPs/Calcite) were characterized by fourier transform infrared (FTIR), ultraviolet and visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD) and field emission scanning electron microscope (FESEM) couplied with energy dispersive X-ray spectroscopy (EDS or EDX), and transmission electron microscopy (TEM) techniques. The broad peaks between 450-500 nm in the UV-Vis spectrum of silver nanoparticles and Ag NPs/Calcite is assigned to a surface plasmon absorption. According to the TEM image, the average size of the Ag NPs on the surface of calcite surface was 11 nm. The Ag NPs/Calcite nanocomposite was used in the catalytic reduction reaction of methyl orange (MO), methylen blue (MB), and rhodamine B (RhB). The catalyst was reused three times without considerable loss in its activity.
[1] Polshettiwar, V.; Varma, R.S.; Green Chemistry 5, 743-754, 2010.
[2] Nakamura, S.; Sato, M.; Sato, Y.; Ando, N.; Takayama, T.; Fujita, M.; Ishihara, M.; Int. J. Mol. Sci. 20, 3620-3638, 2019.
[3] Rostami-Vartooni, A.; Nasrollahzadeh, M.; Alizadeh, M.; Journal of Alloys and Compounds 680, 309-314, 2016.
[4] Tarannum, N.; Gautam, Y.K.; RSC Adv. 9, 34926-34948, 2019.
[5] Dong, X.Y.; Gao, Z.W.; Yang, K.F.; Zhang, W.Q.; Xu, L.W.; Catal. Sci. Technol. 5, 2554-2574, 2015.
[6] Nasrollahzadeh, M.; Sajadi, S.M.; Rostami-Vartooni, A.; Alizadeh, M.; Bagherzadeh, M.; J. Colloid. Interf. Sci. 466, 360-368, 2016.
[7] Nasrollahzadeh, M.; Atarod, M.; Jaleh, B.; Gandomi, M.; Ceram. Int. 42, 8587-8596, 2016.
[8] Nasrollahzadeh, M.; Maham, M.; Rostami-Vartooni, A.; Bagherzadeh, M.; Sajadi, S.M.; RSC Adv. 5, 64769-64780, 2015.
[9] Ramasamy, V.; Anand, P.; Suresh, G.; Advanced Powder Technology 29, 818-834, 2018.
[10] Khodadadi, B.; Journal of Applied Research in Chemistry (JARC) 12(1), 83-92, 2018.
[11] Siahpoosh, A.; Yazdanparast, R.; Jaberkhalafian, A.; Alikazemi, S.; Jundishapur. Sci Med J. 11(2), 185-192, 2012.
[12] Juanga, R.S.; Lin, S.H.; Hsueh, P.Y.; J. Hazard. Mater. 182, 820-826, 2010.
[13] Gupta, A.K.; Pal, A.; Sahoo, C.; Dyes and Pigments 69, 224-232, 2006.
[14] Nasrollahzadeh, M.; Atarod, M.; Sajadi, S.M.; Appl. Surf. Sci. 364, 636-644, 2016.
[15] Rostami-Vartooni, A.; Nasrollahzadeh, M.; Salavati-Niasari, M.; Atarod, M.; Journal of Alloys and Compounds 689, 15-20, 2016.
[16] Rostami-Vartooni, A.; Nasrollahzadeh, M.; Alizadeh, M.; J. Colloid Interf. Sci. 470, 268-275, 2016.
[17] Cheng, Y.; Wang, L.J.; Li, J.S.; Yang, Y.C.; Sun, X.Y.; Materials Letters, 59, 3427-3430, 2005.
[18] Zhironga, L.; Uddinb, M.A.; Zhanxue, S.; Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 79, 1013-1016, 2011.
[19] Sternik, D.; Majdan, M.; Deryło-Marczewska, A.; Zukocinski, G.; Gladysz-Plaska, A.; Gun’ko, V.M.; Mikhalovsky S.V.; J. Therm. Anal. Calorim. 103, 607-615, 2011.
[20] Caglar, B.; Afsin, B.; Tabak, A.; Eren, E.; Chem. Eng. J. 149, 242-248, 2009.
[21] Junejoa, Y.; Sirajuddina, Baykalb, A.; Safdarc, M.; Baloucha, A.; Appl. Surf. Sci. 290, 499-503, 2014.
[22] Kumar, H.A.K.; Mandal, B.K.; Spectrochim. Acta A 130, 13-18, 2014.
[23] Gao, X.; Bi, M.; Shi, K.; Wu, W.; Chai, Z.; Applied Radiation and Isotopes 128, 311-317, 2017.
[24] Hayakawa, K.; Yoshimura, T.; Esumi, K.; Langmuir 19, 5517-5521, 2003.
[25] Xuan, S.; Wang, Y. X.J.; Yu, J.C.; Leung, K.C.F.; Langmuir 25(19), 11835-11843, 2009.
[26] Yang, X.; Zhong, H.; Zhu, Y.; Jiang, H.; Shen, J.; Huang J.; Li, C.; J. Mater. Chem. A 2, 9040-9047, 2014.
[27] Ai, L.; Zeng, C.; Wang, Q.; Catalysis Communications 14, 68-73, 2011.
[28] Liu, Z.Y.; Fu, G.T.; Zhang, L.; Yang, X.Y.; Liu, Z.Q.; Sun, D.M.; Xu, L.; Tang, Y.W.; Scientific Reports 6, 32402-32412, 2016.
[29] Sahoo, P.K.; Kumar, N.; Thiyagarajan, S.; Thakur, D.; Panda, H.S.; ACS Sustainable Chem. Eng. 6, 7475-7487, 2018.
[30] Liaoa, G.; Lib, Q.; Zhaob, W.; Pangb, Q.; Gaoa, H.; Xu, Z.; Applied Catalysis A: General 549, 102-111, 2018.
[31] Musa, A.; Ahmad, M.B.; Hussein, M.Z.; Saiman, M.I.; Sani, H.A.; Nanoscale Research Letters 11, 438- 451, 2016.
[32] Saikia, P.; Miah, A.T.; Das, P.P.; Chem. Sci. 129, 81-93, 2017.
[33] Ghosh, B.K.; Hazra, S.; Naik, B.; Ghosh, N.N.; Powder Technol. 269, 371-378, 2015.
[34] Zainal Abidin, A.; Abu Bakar, N.H.H.; Ng, E.P.; Tan, W.L.; Journal of Taibah University for Science 11, 1070-1079, 2017.