Abstract :
In this research work, sodium dodecyl sulfate (SDS( was deposited on the surface of carbon paste electrode by dropping method. Then, the modified carbon paste electrode with SDS containing nickel (Ni/SDS) was prepared by inserting the modified electrode in a solution containing nickel nitrate for 5 minutes and sweeping of the consecutive potential in sodium hydroxide solution. Also, considering the importance of using ethylene glycohol as a proposed source instead of hydrogen and because of its slow kinetic on the bare carbon paste electrode, its oxidation investigated on the above modified electrode. The results showed the electrocatalytic oxidation of ethylene glycol on the surface of carbon paste electrode modified with SDS/Ni. The effect of various parameters on the efficiency of modified electrode was investigated and the optimal conditions were determined. Finally, the reaction rate constant between the chemical redox centers at the modified electrode surface and ethylene glycol was calculated. Simplicity, low cost, and high sensitivity are the outstanding features of the electrode.
References:
[1] Zhao, T.S.; Xu, C.; Chen, R.; Yang, W.W.; Prog. Energy Combust. Sci. 35, 275–292,
2009.
[2] Li, Y.S.; Zhao, T.S.; Liang, Z.X.; J. Power Sources 187, 387–392, 2009.
[3] Zhou, W.J.; Song, S.Q.; Li, W.Z.; Zhou, Z.H.; Sun, G.Q.; Xin, Q.; J. Power Sources 140,
50–58, 2005.
[4] An, L.; Zhao, T.S.; Shen, S.Y.; Wu, Q.X.; Chen, R.; Int. J. Hydrogen Energy 35, 4329-
4335, 2010.
[5] Rousseau, S.; Coutanceau, C.; Lamy, C.; Leger, J.M.; J. Power Sources, 158, 18–24,
2006.
[6] Liang, Z.X.; Zhao, T.S.; Xu, J.B.; Zhu, L.D.; Electrochim. Acta 54, 2203–2208, 2009.
[7] Wang, H.; Jusys, Z.; Behm, R.J.; J. Power Sources 154, 351–359, 2006.
[8] Peled, E.; Livshits, V.; Duvdevani, T.; J. Power Sources 106, 245–248, 2002.
[9] Livshits, V.; Peled, E.; J. Power Sources 161, 1187–1191, 2006.
[10] Livshits, V.; Philosoph, M.; Peled, E.; J. Power Sources 178, 687–691, 2008.
[11] Matsuoka, K.; Iriyama, Y.; Abe, T.; Matsuoka, M.; Ogumi, Z.; Electrochim. Acta 51,
1085–1090, 2005.
[12] Lima, R.B.; Paganin, V.; Iwasita, T.; Vielstich, W.; Electrochim. Acta 49, 85–91, 2003.
[13] Ojani, R.; Raoof, J.B.; Hosseini, S.R.; J. Solid State Electrochem. 13, 1605-1611, 2009.
[14] Nagashree, K.L.; Ahmad, M.F.; J. Solaid State Electrochem. 14, 2307-2320, 2010.
[15] Ojani, R.; Raoof, J.B.; Fathi, Sh.; Electroanalysis 20, 1825-1830, 2008.
[16] Ojani, R.; Raoof, J.B.; Salmany-Afagh, P.; J. Electroanal. Chem. 571, 1–8, 2004.
[17] Norouzi, B.; Sarvinehbaghi, S.; Norouzi, M.; Russ. J. Electrochem. 50, 1020–1026,
2014.
[18] Norouzi, B.; Malekan, A.; Moradian, M.; Russ. J. Electrochem. 52, 330-339, 2016.
[19] Bard, A.J.; Faulkner, L.R.; "Electrochemical Methods: Fundamentals and
Applications", John Wiely & Sons, 2001.
[20] Ojani, R.; Raoof, J.B.; Rahemi, V.; Int. J. Hydrogen Energy 36, 13288-13294, 2011.
[21] Brundle, C.R.; Carley, A.F.; Chem. Phys. Let. 31, 423-427, 1975.
[22] Ojani, R.; Raoof, J.B.; Fathi, Sh.; Electrochim. Acta 54, 2190–2196, 2009.
[23] Ureta-Za˜nartu, M.S.; Alarc´on, A.; Mu˜noz, G.; Guti´errez, C.; Electrochim.
Acta 52, 7857–7864, 2007.
[24] Ojani, R.; Raoof, J.B.; Goli, M.; Alinezhad, A.; J. Appl. Electrochem., 43,
927–937, 2013.
[25] Norouzi, B.; Ahangarian,M.; Norouzi, M.; Iran. J. Org. Chem. 3, 653-657, 2011.
[26] Lin, Q.; Wei, Y.; Liu, W.; Yu, Y.; Hu, J.; Int. J. Hydrogen Energy 42, 1403-1411, 2017.
_||_