Abstract :
in the present study, attempts have been made for the first time to investigate the influence of lead sulfide (PbS) colloidal quantum dots along with their ligand exchange from long-chain insulating oleic acid )OA) to the short-chain semiconducting methylammonium lead iodide )MA4PbI6), called perovskite, upon the photon harvesting efficiency and photovoltaic characteristics of bulk heterojunction (BHJ) polymeric solar cell comprising ternary photo active layer based on poly )3-hexyl thiophene))rrP3HT) as electron donor and PC61BM as acceptor. According to the photo absorption spectrum obtained within UV-Vis and NIR regions, the ternary cells based on OA and MA4PbI6 capped PbS exhibit enhanced photon harvesting efficiency compared with their binary counterpart cell. The steady state photoluminescence results reveal efficient electron transfer from photoexcited P3HT to QDs and hole transfer from photoexcited QDs to P3HT, leading to the improved power conversion efficiency (PCE) of the ternary cells. However, compared with OA, the semiconducting perovskite )MA4PbI6) ligand shows to be much more effective in increasing power conversion efficiency, so that 6% improvement in PCE is seen by the introduction of 6% PbS QD capped with perovskite ligand unlike PbS QD with OA ligand which had adverse effect on the photovoltaic properties of p 3HT: PC61BM solar cell. This is explained to be due to the insulating characteristic of long chain OA as well as improved charge carrier transport in the case of PbS capped perovskite based ternary solar cells.
References:
[1] Guo, F.; Zhu, X.; Forberich, K.; Krantz, J.; Stubhan, T.; Salinas, M.; Halik, M.; Spallek, S.; Butz, B.; Spiecker, E.; Ameri, T.; Li, N.; Kubis, P.; Guldi, D.M.; Matt, G.J.; Brabec, C.J.; Adv. Energy Mater. 3, 1062-1067, 2013.
[2] Ameri, T.; Khoram, P.; Min, J.; Brabec, C.J.; Adv. Mater. 25, 4245–4266, 2013.
[3] Gasparini, N.; Salvador, M.; Fladischer, S.; Katsouras, A.; Avgeropoulos, A.; Spiecker, E.; Chochos, C. L.; Brabec, C. J.; Ameri, T.; Adv. Energy Mater. 5, 1–7, 2015.
[4] Gasparini, N.; Jiao, X.; Heumueller, T.; Baran, D.; Matt, G.J.; Fladischer, S.;Spiecker, E.; Ade, H.; Brabec, C.J.; Ameri, T.; Nat. Energy 1, 1–14, 2016.
[5] Gasparini, N.; Katsouras, A.; Prodromidis, M.I.; Avgeropoulos, A.; Baran, D.; Salvador, M.; Fladischer, S.; Spiecker, E.; Chochos, C.L.; Ameri, T.; Brabec, C.J.; Adv. Funct. Mater. 25, 4898–4907, 2015.
[6] Huang, J.H.; Velusamy, M.; Ho, K.C.; Lin, J.T.; Chu C.W.; J. Mater. Chem. 20, 2820-2825, 2010.
[7] Sharma, G.D.; Singh, S.P.; Roy, M.S.; Mikroyannidis, J.A.; Org. Electron. 13, 1756–1762, 2012.
[8] Min, J.; Ameri, T.; Gresser, R.; Lorenz-Rothe, M.; Baran, D.; Troeger, A.; Sgobba, V.; Leo, K.; Riede, M.; Guldi, D.M.; Brabec, C.J.; ACS Appl. Mater. Interfaces, 5, 5609–5616, 2013.
[9] Ke, L.; Min, J.; Adam, M.; Gasparini, N.; Hou, Y.; Perea; J.D.; Chen, W.; Zhang, H.; Fladischer, S.; Sale, A.C.; Spiecker, E.; Tykwinski, R.R.; Brabec, C..; Ameri, T.; Adv. Energy Mater. 6, 1–13, 2016.
[10] Carey, G.H.; Abdelhady, A.L.; Ning, Z.; Thon, S.M.; Bakr, O.M.; Sargent, E.H.; Chem. Rev. 115, 12732-12763, 2015.
[11] Talapin, D.V; Lee, J.; Kovalenko, M.V; Shevchenko, E.V; Chem. Rev. 110, 389–458, 2010.
[12] Fu, H.; Choi, M.; Luan, W.; Kim, Y.S.; Tu, S.T.; Solid. State. Electron. 69, 50–54, 2012.
[13] Jarzab, D.; Szendrei, K.; Yarema, M.; Pichler, S.; Heiss, W.; Loi, M.A.; Adv. Funct. Mater. 21, 1988–1992, 2011.
[14] Taukeer, K.M.; Kaur, A.; Dhawan, S.K.; Chand, S.; J. Appl. Phys. 110, 044509-17, 2011.
[15] Han, Y.W.; Lee, E.J.; Joo, J.; Park, J.; Sung, T.H.; Moon, D.K.; J. Mater. Chem. A. 4, 10444–10453, 2016.
[16] Bisri, S.Z.; Piliego, C.; Yarema, M.; Heiss, W.; Loi, M.A.; Adv. Mater. 25, 4309–4314, 2013.
[17] Zhitomirsky, D.; Furukawa, M.; Tang, J.; Stadler, P.; Hoogland, S.; Voznyy, O.; Liu, H.; Sargent, E.H.; Adv. Mater. 24, 6181–6185, 2012.
[18] Wise, F.W.; Acc. Chem. Res. 33, 773–780, 2000.
[19] Sytnyk, M.; Yakunin, S.; Schöfberger, W.; Lechner, R.T.; Burian, M.; Ludescher, L.; Killilea, N.A.; Yousefi Amin A.; Kriegner, D.; Stangl, J.; Groiss, H.; Heiss, W.; ACS Nano 11(2), 1246–1256, 2017.
[20] Hines, M.A.; Scholes, G.D.; Adv. Mater. 15, 1844–1849, 2003.
[21] Brown, P.R.; Kim, D.; Lunt, R.R.; Zhao, N.; Bawendi, M.G.; Grossman, J.C.; Bulovi, V.; ACS Nano 8, 1–17, 2014.
[22] Kahmann, S.; Mura, A.; Protesescu, L.; Kovalenko, M.V.; Brabec, C.J.; Loi, M.A.; J. Mater. Chem. C 3, 5499–5505, 2015.
[23] Itskos, G.; Papagiorgis, P.; Tsokkou, D.; Othonos, A.; Hermerschmidt, F.; Economopoulos S.P.; Yarema, M.; Heiss, W.; Choulis S.; Adv. Energy Mater. 3, 1490–1499, 2013.
[24] Xu, F.; Gerlein, L.; Ma, X.; Haughn, C.; Doty, M.; Cloutier, S.; Materials (Basel) 8, 1858–1870, 2015.
_||_