Preparation and characterization of cobalt-manganese-cerium nanocatalyst in order to applying in the Fischer-Tropsch process and study the operating conditions on the activity of the catalyst
Subject Areas :Hesam Aldin Hashemzehi 1 , Ali Akbar Mirzaei 2 , Amin Behzadmehr 3
1 - PhD student in Applied Chemistry, Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran.
2 - . Professor of Physical Chemistry, Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran.
3 - Professor of Mechanical Engineering, Department of Mechanical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran.
Keywords: Optimum temperature, Pressure and Feed Ratio, cobalt-manganese-cerium catalyst, Fisher-Tropsch synthesis,
Abstract :
One of the most important processes in the petrochemical industry is Fisher-Tropes synthesis. In this process, the synthesis gas, which mainly contains H2 and CO gases, is converted to a mixture of hydrocarbons. The Fischer-Tropsch process is a catalytic process that catalyst is an important and determining part of this process. Therefore, in this study, the cobalt-manganese-cerium tri-metal catalyst based on alumina (Al2O3) was prepared by the wet impregnation method. The optimal catalyst was identified using X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermal gravimetry analysis (TGA) techniques. Surface area of the catalyst was measured by BET method. The fabricated catalyst was used to perform the Fisher-Tropes process in a laboratory fixed-bed microreactor and the effect of operating parameters such as temperature, pressure, and feed ratio on the selectivity and activity of the catalyst were investigated. According to the results, a temperature of 300 °C, pressure of 1 atm, and feed molar ratio of H2 / CO = 1.1 were selected as the optimal operating conditions of the catalyst.
[1] Marano, J.J.; 2nd International Freiberg Conference on IGCC & XtL Technologies, Freiberg, Germany, 2007.
[2] Weiqi, Y.B.; Xu, J.; Zhichao, T.; Xiang, H.; Li, Y.; Catal. Lett. 125, 116-122, 2008.
[3] Hegedus, L.L.; Baron, K.; Journal of Catalysis 37(1), 127-132, 1975.
[4] Malek Abbaslou, R.M.; Soltan Mohammadzadeh J.S.; Dalai, A.K.; Fuel Processing Technology 90, 849–856, 2009.
[5] Lob, W.; “Electrochemistry of organic compounds”, first ed., John Wiley & Sons, New York, 1906.
]6[ Bukur, D.B.; Nowicki, L.; Patel, S.A.; Can. J. Chem. Eng. 74(3), 399-404, 1996.
]7[ Schulz, H.; Applied Catalysis A 186, 3–12, 1999.
]8[ Mirzaei, A.A.; Habibpour, R.; Faizi, M.; Kashi, E.; Applied Catalysis A 301, 272–283, 2006.
]9] Stiles, A.B.; Koch, T.A.; Catalyst Manufacture, 2nd ed., CRC Press, Boca Raton, 1995.
]10] Hou, L.; Ph.D. Thesis, Chapter 2, University of Pittsburgh, Pennsylvania, 2005.
[11] Dry, M.E.; Journal of Molecular Catalysis 17, 133-144, 1982.
]12] Boreskov, G.K.; Kinetica i kataliz 3, 470, 1962.
[13] Feyzi, M.; Khodaei, M.M.; Shahmoradi, J.; J. Taiwan. Inst. Chem. Eng. 45(2), 452- 60, 2014.
[14] Atashi, H.; Razmjooei, S.; Khorashadizadeh, M.; Shiva, M.; Farshchi Tabrizi, F.; Seyed Mousavi,
S.; J. Taiwan. Inst. Chem. Eng. 54, 83-90, 2015.
[15] Liu, Y.; Teng, B.T.; Guo, X.H.; Li, Y.; Chang, J.; Tian, L.; J Mol Catal A: Chem. 272(1), 182-90, 2007.
[16] Yates, I.C.; Satterfield, C.N.; Energy Fuels. 6(3), 308-14, 1992.
[17] Özkara-Aydınoğlu, Ş.; Ataç, Ö.; Gül, Ö.F.; Sinan, Ş.K.; Şal, S.; Baranak, M.; Chem Eng J. 181-182, 581-589, 2012.
[18] Hossein, Z.F.; Hossein, A.; Farshad, F.T.; Ali Akbar, M.; Energy 128, 496-508, 2017.
[19] Hesam, A.H.; Ali, A.M; Hossein, A.; Fatemeh, R.; Petroleum Science and Technology 35(24), 2229-2234, 2017.
[20] Zafari, R.; Abdouss, M.; Zamani, Y.; Fuel 237, 1262-1273, 2019.
]21] Fernandes, F.A.N.; Ind. Eng. Chem. Res. 45, 1047-1057, 2006.
_||_[1] Marano, J.J.; 2nd International Freiberg Conference on IGCC & XtL Technologies, Freiberg, Germany, 2007.
[2] Weiqi, Y.B.; Xu, J.; Zhichao, T.; Xiang, H.; Li, Y.; Catal. Lett. 125, 116-122, 2008.
[3] Hegedus, L.L.; Baron, K.; Journal of Catalysis 37(1), 127-132, 1975.
[4] Malek Abbaslou, R.M.; Soltan Mohammadzadeh J.S.; Dalai, A.K.; Fuel Processing Technology 90, 849–856, 2009.
[5] Lob, W.; “Electrochemistry of organic compounds”, first ed., John Wiley & Sons, New York, 1906.
]6[ Bukur, D.B.; Nowicki, L.; Patel, S.A.; Can. J. Chem. Eng. 74(3), 399-404, 1996.
]7[ Schulz, H.; Applied Catalysis A 186, 3–12, 1999.
]8[ Mirzaei, A.A.; Habibpour, R.; Faizi, M.; Kashi, E.; Applied Catalysis A 301, 272–283, 2006.
]9] Stiles, A.B.; Koch, T.A.; Catalyst Manufacture, 2nd ed., CRC Press, Boca Raton, 1995.
]10] Hou, L.; Ph.D. Thesis, Chapter 2, University of Pittsburgh, Pennsylvania, 2005.
[11] Dry, M.E.; Journal of Molecular Catalysis 17, 133-144, 1982.
]12] Boreskov, G.K.; Kinetica i kataliz 3, 470, 1962.
[13] Feyzi, M.; Khodaei, M.M.; Shahmoradi, J.; J. Taiwan. Inst. Chem. Eng. 45(2), 452- 60, 2014.
[14] Atashi, H.; Razmjooei, S.; Khorashadizadeh, M.; Shiva, M.; Farshchi Tabrizi, F.; Seyed Mousavi,
S.; J. Taiwan. Inst. Chem. Eng. 54, 83-90, 2015.
[15] Liu, Y.; Teng, B.T.; Guo, X.H.; Li, Y.; Chang, J.; Tian, L.; J Mol Catal A: Chem. 272(1), 182-90, 2007.
[16] Yates, I.C.; Satterfield, C.N.; Energy Fuels. 6(3), 308-14, 1992.
[17] Özkara-Aydınoğlu, Ş.; Ataç, Ö.; Gül, Ö.F.; Sinan, Ş.K.; Şal, S.; Baranak, M.; Chem Eng J. 181-182, 581-589, 2012.
[18] Hossein, Z.F.; Hossein, A.; Farshad, F.T.; Ali Akbar, M.; Energy 128, 496-508, 2017.
[19] Hesam, A.H.; Ali, A.M; Hossein, A.; Fatemeh, R.; Petroleum Science and Technology 35(24), 2229-2234, 2017.
[20] Zafari, R.; Abdouss, M.; Zamani, Y.; Fuel 237, 1262-1273, 2019.
]21] Fernandes, F.A.N.; Ind. Eng. Chem. Res. 45, 1047-1057, 2006.