Abstract :
In this study, an effective electrochemical sensor for the rapid measurement of L-cysteine based on glassy carbon electrode modified with polyindole/silver nanoparticles nanocomposite is presented. Polyindole nanofibers were synthesized by cyclic voltammetry method at the glassy carbon electrode surface, and then silver nanoparticles were deposited on these nanofibers using a constant potential method. Surface morphology and characterization of the modified electrodes were confirmed by field emission scanning microscopy (FE-SEM), X-ray diffraction (XRD), Raman, and FT-IR spectroscopies. The electrochemical investigation showed that the polyindole/silver nanoparticles had very good efficiency with respect to the electrocatalytic oxidation of L-cysteine in phosphate buffer solution (pH = 7.0). The response of the glassy carbon electrode/polyindole/silver nanoparticles to L-cysteine was linear in the concentration range of 0.01-10 mM. The detection limit was obtained at signal/noise=3, 5.7 μM. In addition, the sensor showed good stability and repeatability. The application of the proposed sensor for the analysis of L-cysteine in human serum was successful.
References:
[1] Droge, W.; Eck, H.P.; Gmunder, H.; Mihm, S.; The American Journal of Medicine 91, 140-144, 1991.
[2] Goodman, M.T.; McDuffie, K.; Hernandez, B.; Wilkens, L.R.; Selhub, J.; Cancer 89, 376-382, 2000.
[3] Lang, C.A.; Mills, B.; Mastropaolo, W.; Liu, M.C.; Journal of Laboratory and Clinical Medicine 135, 402-405, 2000.
[4] Liu, X.S.; Kim, C.N.; Pohl, J.; Wang, X.; Journal of Biological Chemistry 271, 13371-13376, 1996.
[5] Ros-Lis, J.V.; Garcia, B.; Jimenez, D.; Martinez-Manez, R.; Sancenon, F.; Soto, J.; Gon-zalvo, F.; Valldecabres, M.C.; Journal of the American Chemical Society 126, 4064-4065, 2004.
[6] Chen, B.; Wang, L.; Xiao, Y.; Angewandte Chemie International Edition 48, 500-503, 2009.
[7] Hart, J.P.; Hartley, I.C.; Analyst 119,259-263, 1994.
[8] Razmi, H.; Heidari, H.; Analytical Biochemistry 388, 15-22, 2009.
[9] Kulys, J.; Drungiliene, A.; Analytica Chimica Acta 243, 287-292, 1991.
[10] Dhanalakshmi, K.; Saraswathi, R.; Journal of Materials Science 36, 4107-4115, 2001.
[11] Tourillon, G.; Garnier, F.; Journal of Electroanalytical Chemistry 135, 173-178, 1982.
[12] Garnier, F.; Tourillon, G.; Gazard, M.; Dubois, J.C.; Journal of Electroanalytical Chemistry 148, 299-303, 1983.
[13] Zhijiang, C.; Chengwei, H.; Journal of Power Sources 196, 10731-10736, 2011.
[14] Pandey, P.C.; Prakash, R.; Journal of the Electrochemical Society145, 4103-4107, 1998.
[15] Pandey, P.C.; Prakash, R.; Journal of the Electrochemical Society 145, 999-1003, 1998.
[16] Seo, M.; Kim Lee, J.G.; Kim, S.B.; Koo, S.M.; Thin Solid Films 616, 366-374, 2016.
[17] Vignesh, V.; Felix Anbarasi, K.; Karthikeyeni, S.; Sathiyanarayanan, G.; Subramanian, P.; Thirumurugan, R.; Colloids and Surfaces A: Physicochemical and Engineering Aspects 439, 184-192, 2013.
[18] Jebakumar, T.; Edison, I.; Sethuraman, M.G.; Process Biochemistry 47,1351-1357, 2012.
[19] Kruis, F.; Fissan, H.; Rellinghaus, B.; Materials Science and Engineering: B 69, 329-334, 2000.
[20] Hsieh, C.T.; Pan, C.; Chen, W.Y.; Journal of Power Sources 196, 6055-6061, 2011.
[21] Starowicz, M.; Stypuła, B.; Banaś, J.; Electrochemistry Communications 8, 227-230, 2006.
[22] Raoof, J.B.; Ojani, R.; Hasheminejad, E.; Rashid-Nadimi, S.; Applied Surface Science 258, 2788-2795, 2012.
[23] Yan, W.; Feng, X.; Chen, X.; Hou, W.; Zhu, J.J.; Biosensors and Bioelectronics 23,925-931, 2008.
[24] Bouazza, S.; Alonzo, V.; Hauchard, D.; Synthetic Metals 159, 1612-1619, 2009.
[25] Babu, K.; Dhandapani, P.; Maruthamuthu, S.; Kulandainathan, M.A.; Carbohydrate Polymers 90, 1557-1563, 2012.
[26] Rajasudha, G.; Rajeswari, D.; Lavanya, B.; Saraswathi, R.; Annapoorni, S.; Mehra, N.C.; Colloid and Polymer Science 283, 575-582, 2005.
[27] Yang, X.; Li, L.; Shang, S.; Pan, G.; Yu, X.; Yan, G.; Materials Letters 64, 1918-1920, 2010.
[28] Salimi, A.; Hallaj, R.; Talanta 66, 967-975, 2005.
[29] Santhiago, M.; Lima, P.R.; Santos, W.; De, J.R.; Kubota, L.T.; Sensors and Actuators B: Chemical 146, 213-220, 2010.
[30] Nekrassova, O.; Lawrence, N.S.; Compton, R.G.; Electroanalysis 15, 1655-1660, 2003.
[31] Sattarahmady, N.; Heli, H.; Analytical Biochemistry 409, 74-80, 2011.
[32] Gallo, C.M.; Pires, B.M.; Toledo, K.C.F.; Jannuzzi, S.A.V.; Arruda, E.G.R.; Formiga, A.L.B.; Bonacin, J.A.; Synthetic Metals198, 335-339, 2014.
[33] Hsiao, Y.; Su, W.; Cheng, J.; Cheng, S.; Electrochimica Acta 56, 6887-6895, 2011.
[34] Geng, D.; Li, M.; Bo, X.; Guo, L.; Sensors and Actuators B: Chemical 237, 581-590, 2016.
[35] Dong, Y.P.; Pei, L.Z.; Chu, X.F.; Zhang, W.B.; Zhang, Q.F.; Electrochimica Acta, 55 5135-5141, 2010.
[36] Abbaspour, A.; Ghaffarinejad, A.; Electrochimica Acta 53, 6643-6650, 2008.
[37] Spartaru, N.; Sarada, B.V.; Popa, E.; Tryk, D.A.; Fujishima, A.; Analytical Chemistry 73, 514-519, 2001.
_||_