Preparation, characterization, and investigation of antibacterial activity of polyacrylonitrile/silver metal-organic framework/chitosan nanoparticles/N-acetylcystine multi-component fibrous composites
Subject Areas :Zeinab Ansari-Asl 1 , Hadis Rashidi-Kia 2 , Esmaeil Darabpour 3
1 - Department of Chemistry, College of Scences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 - Department of Chemistry, College of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 - Department of Chemistry, College of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Keywords: : Metal-organic framework, Chitosan, N-acetylcysteine, Polyacrylonitrile, Composite, Antibacterial activity ,
Abstract :
In this research, fibrous composites with antibacterial activities including polyacrylonitrile (PAN), chitosan nanoparticles (CSNPs), silver metal-organic framework, and N-acetylcysteine (NAC) were prepared by electrospinning method. The prepared fibers were studied using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and elemental mapping using energy-dispersive X-ray spectroscopy (EDS). The obtained results of the antibacterial studies against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) showed that the addition of silver metal-organic framework as well as the antibacterial compounds such as CSNPs and NAC led to the improvement of the antibacterial properties of the fibers. Therefore, these compounds have the potential to be used in medical fields such as wound healing
[1] Cancio LC, Wolf SE. A History of Burn Care.
In: Jeschke MG, Kamolz LP, Sjobrg F, Wolf
SE, editors. Handbook of Burns Volume 1.
New York: Springer; 2019. p. 3-17.
[2] Liu X, Xu H, Zhang M, Yu DG. Electrospun
Medicated Nanofibers for Wound Healing:
Review. Membranes. 2021;11(10):770. doi:
10.3390/membranes1110077
انصاري اصل و همكاران
نشريه پژوهشهاي كاربردي در شيمي (JARC (سال هجدهم، شماره ،2 تابستان 1403
58
[3] Wang S, Yan F, Ren P, Li Y, Wu Q, Fang X, et al.
Incorporation of metal-organic frameworks into
electrospun chitosan/poly (vinyl alcohol)
nanofibrous membrane with enhanced
antibacterial activity for wound dressing
application. International Journal of Biological
Macromolecules. 2020;158:9-17. doi: 10.1016/
j.ijbiomac.2020.04.116
[4] Ahmed R, Tariq M, Ali I, Asghar R, Noorunnisa
Khanam P, Augustine R, et al. Novel electrospun
chitosan/polyvinyl alcohol/zinc oxide
nanofibrous mats with antibacterial and
antioxidant properties for diabetic wound
healing. International Journal of Biological
Macromolecules. 2018;120:385-93. doi: 10.1016
/j.ijbiomac.2018.08.057
[5] Terzopoulou A, Nicholas JD, Chen XZ, Nelson
BJ, Pané S, Puigmartí-Luis J. Metal-Organic
Frameworks in Motion. Chem Rev.
2020;120(20):11175-93. doi: 10.1021/acs.
chemrev.0c00535
[6] Li R, Chen T, Pan X. Metal–OrganicFramework-Based Materials for Antimicrobial
Applications. ACS Nano. 2021;15(3):3808-48.
doi: 10.1021/acsnano.0c09617
[7] Mendiratta S, Usman M, Lu KL. Expanding the
dimensions of metal–organic framework
research towards dielectrics. Coordination
Chemistry Reviews. 2018;360:77-91. doi:
10.1016/j.ccr.2018.01.005
[8] Samuel MS, Jose S, Selvarajan E, Mathimani T,
Pugazhendhi A. Biosynthesized silver
nanoparticles using Bacillus amyloliquefaciens;
Application for cytotoxicity effect on A549 cell
line and photocatalytic degradation of pnitrophenol. Journal of Photochemistry and
Photobiology B: Biology. 2020;202:111642. doi:
10.1016/j.jphotobiol.2019.111642
[9] Shanmuganathan R, Karuppusamy I, Saravanan
M, Muthukumar H, Ponnuchamy K,
Ramkumar VS, et al. Synthesis of Silver
Nanoparticles and their Biomedical
Applications - A Comprehensive Review.
Current pharmaceutical design.
2019;25(24):2650-60. doi: 10.2174/13816
12825666190708185506
[10] Berchel M, Gall TL, Denis C, Hir SL, Quentel F,
Elléouet C, et al. A silver-based metal–organic
framework material as a ‘reservoir’ of
bactericidal metal ions. New Journal of
Chemistry. 2011;35(5):1000-3. doi:
10.1039/C1NJ20202B
[11] Pastore VJ, Cook TR. Coordination-Driven
Self-Assembly in Polymer–Inorganic Hybrid
Materials. Chemistry of Materials.
2020;32(9):3680-700. doi: 10.1021/acs.
chemmater.0c00851
[12] Han H, Yang J, Li X, Qi Y, Yang Z, Han Z, et
al. Shining light on transition metal sulfides:
New choices as highly efficient aents. Nano Research. 2021;14(8):2512-34.
doi: 10.1007/s12274-021-3293-3
[13] Zhang S, Ye J, Sun Y, Kang J, Liu J, Wang Y,
et al. Electrospun fibrous mat based on silver
(I) metal-organic frameworks-polylactic acid
for bacterial killing and antibiotic-free wound
dressing. Chemical Engineering Journal.
2020;390:124523. doi: 10.1016/j.cej.
2020.124523
[14] Huang C, Xu X, Fu J, Yu D-G, Liu Y. Recent
Progress in Electrospun Polyacrylonitrile
Nanofiber-Based Wound Dressing. Polymers
(Basel). 2022;14(16):3266. doi:
10.3390/polym14163266
[15] Anyaegbu CE, Zhang H, Xiao J, Tao M, Ma
N, Zhang W. Tertiary amine-bisquaternary
ammonium functionalized polyacrylonitrile
fiber for catalytic synthesis of pyran-annulated
heterocycles. Reactive and Functional
Polymers. 2022;172:105201. doi: 10. 1016/j.
reactfunctpolym.2022.105201
[16] Ansari-Asl Z, Shahvali Z, Sacourbaravi R,
Hoveizi E, Darabpour E. Cu(II) metal-organic
framework@Polydimethylsiloxane
nanocomposite sponges coated by chitosan for
antibacterial and tissue engineering applications.
Microporous and Mesoporous Materials.
2022;336:111866. doi: 10.1016/j. micromeso
.2022.111866
[17] Gomez-Aparicio LS, Bernáldez-Sarabia J,
Camacho-Villegas TA, Lugo-Fabres PH, DíazMartínez NE, Padilla-Camberos E, et al.
Improvement of the wound healing properties of
hydrogels with N-acetylcysteine through their
modification with methacrylate-containing
polymers. Biomaterials science. 2021;9(3):726-44.
doi: 10.1039/d0bm01479f
[18] Chandrasekaran M, Kim KD, Chun SC.
Antibacterial Activity of Chitosan
