Immobilization of palladium nanoparticles on the magnetic quantum dots based on the carbon of chitosan and its catalytic efficiency in reduction of nitroarenes
Subject Areas : شیمی آلیfatemeh rafiee 1 , niloofar tajfar 2
1 - Associate Prof. of Department of Organic Chemistry, Factually of Chemistry, Alzahra University, Tehran, Iran.
2 - M.Sc. Student in Organic Chemistry, Factually of Chemistry, Alzahra University, Tehran, Iran.
Keywords: Chitosan, Palladium, Carbon-based quantum dots, Nitroarene reduction,
Abstract :
Quantum dot carbon nanoparticles based on magnetic chitosan (Fe3O4@CQD) were prepared through hydrothermal carbonization of chitosan biopolymer and then magnetization with iron oxide (Fe3O4) nanoparticles. Then, in the presence of palladium chloride in ethanol as a solvent under reflux conditions without using a reducing agent, palladium nanoparticles were stabilized on the surface of carbon quantum dots, and finally, Fe3O4@CQD@Pd nanocatalyst was obtained. The prepared nanocatalyst was characterized by photoluminescence (PL), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Inductively coupled plasma (ICP), Vibrating-sample magnetometry (VSM), and X-ray diffraction (XRD) techniques. The efficiency of this magnetic nanocatalyst was evaluated in the reduction reaction of nitroarene derivatives as environmental pollutants, with electron-donating and electron-withdrawing. In the presence of prepared nanocatalyst, at room temperature, and in H2O:EtOH (1:1) as green solvent, aniline derivatives were obtained in excellent yields at short reaction times. Moreover, the nanocatalyst was separated by applying an external magnet and reused at least for four successive runs without a decrease in its catalytic activity.
[1] Innocenzi P, Stagi L. Carbon dots as oxidant-antioxidant nanomaterials, understanding the structure-properties relationship. A critical review. Nano Today. 2023;50:101837. doi :org/10.1016/j.nantod.2023.101837
[2] Barve K, Singh U, Yadav P, Bhatia D. Carbon-based designer and programmable fluorescent quantum dots for targeted biological and biomedical applications. Materials Chemistry Frontiers. 2023;7(9):1781-802. doi: org/10.1039/D2QM01287A
[3] Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP. Carbon dots for multiphoton bioimaging. Journal of the American Chemical Society. 2007;129(37):11318-9. doi: org/10.1021/ja073527l
[4] Wang J, Jiang J, Li F, Zou J, Xiang K, Wang H, Li Y, Li X. Emerging carbon-based quantum dots for sustainable photocatalysis. Green Chemistry. 2023;25(1):32-58. doi: org/10.1039/D2GC03160D
[5] Wang Q, Huang X, Long Y, Wang X, Zhang H, Zhu R, et al. Hollow luminescent carbon dots for drug delivery. Carbon. 2013;59:192-9. doi: org/10.1016/j.carbon.2013.03.009
[6] Hu S, Liu J, Yang J, Wang Y, Cao S. Laser synthesis and size tailor of carbon quantum dots. Journal of Nanoparticle Research. 2011;13:7247–7252. doi: org/10.1007/s11051-011-0638-y
[7] Bao L, Liu C, Zhang ZL, Pang DW. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Advanced Materials. 2015;27:1663-1667. doi: org/10.1002/adma.201405070
[8] Qiao Z-A, Wang Y, Gao Y, Li H, Dai T, Liu Y, Huo Q. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chemical Communications. 2010;46(46):8812-4. doi: org/10.1039/C0CC02724C
[9] Park SY, Lee HU, Park ES, Lee SC, Lee J-W, Jeong SW, Kim CH, Lee YC, Huh YS, Lee J. Photoluminescent green carbon nanodots from food-waste-derived sources: Large-scale synthesis, properties, and biomedical applications. ACS Applied Materials & Interfaces. 2014;6(5):3365-70. doi: org/10.1021/am500159p
[10] Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L, Liu W. Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chemical Communications. 2012;48(64):7955-7. doi: org/10.1039/C2CC33869F
[11] Chen B, Li F, Li S, Weng W, Guo H, Guo T, Zhang X, Chen Y, Huang T, Hong X, You S, Lin Y, Zeng K, Chen S. Large scale synthesis of photoluminescent carbon nanodots and their application for bioimaging. Nanoscale. 2013;5(5):1967-71. doi: org/10.1039/C2NR32675B
[12] Wang J, Gao M, Ho GW. Bidentate-complex-derived TiO2/carbon dot photocatalysts: in situ synthesis, versatile heterostructures, and enhanced H 2 evolution. Journal of Materials Chemistry A. 2014;2(16):5703-9. doi: org/10.1039/C3TA15114J
[13] Das C, Sillanpää M, Zaidi SA, Khan MA, Biswas G. Current trends in carbon-based quantum dots development from solid wastes and their applications. Environmental Science and Pollution Research. 2023;30(16):45528-54. doi: org/10.1007/s11356-023-25822-y
[14] Mehta VN, Jha S, Kailasa SK. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Materials Science and Engineering: C. 2014;38:20-7. doi: org/10.1016/j.msec.2014.01.038
[15] Gholinejad M, Najera C, Hamed F, Seyedhamzeh M, Bahrami M, Kompany-Zareh M. Green synthesis of carbon quantum dots from vanillin for modification of magnetite nanoparticles and formation of palladium nanoparticles: Efficient catalyst for Suzuki reaction. Tetrahedron. 2017;73(38):5585-92. doi: org/10.1016/j.tet.2016.11.014
[16] Gholinejad M, Zareh F, Najera C. Nitro group reduction and Suzuki reaction catalysed by palladium supported on magnetic nanoparticles modified with carbon quantum dots generated from glycerol and urea. Applied Organometallic Chemistry. 2018;32(1):e3984. doi: org/10.1002/aoc.3984
[17] Saipanya S, Waenkaew P, Maturost S, Pongpichayakul N, Promsawan N, Kuimalee S, Namsar O, Income K, Kuntalue B, Themsirimongkon S, Jakmunee J. Catalyst composites of palladium and N-doped carbon quantum dots-decorated silica and reduced graphene oxide for enhancement of direct formic acid fuel cells. ACS Omega. 2022;7(21):17741-55. doi: org/10.1021/acsomega.2c00906
[18] Selim A, Kaur S, Dar AH, Sartaliya S, Jayamurugan G. Synergistic effects of carbon dots and palladium nanoparticles enhance the sonocatalytic performance for rhodamine B degradation in the absence of light. ACS Omega. 2020;5(35):22603-13. doi: org/10.1021/acsomega.0c03312
[19] Shabbir H, Csapó E, Wojnicki M. Carbon Quantum Dots: The role of surface functional groups and proposed mechanisms for metal ion sensing. Inorganics. 2023;11(6):262. doi: org/10.3390/inorganics11060262
[20] Pourmadadi M, Rahmani E, Rajabzadeh-Khosroshahi M, Samadi A, Behzadmehr R, Rahdar A, Ferreira LFR. Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review. Journal of Drug Delivery Science and Technology. 2023:80:104156. doi.: org/10.1016/j.jddst.2023.104156
[21] Gorji ZE, Khodadadi AA, Riahi S, Repo T, Mortazavi Y, Kemell M. Functionalization of nitrogen-doped graphene quantum dot: A sustainable carbon-based catalyst for the production of cyclic carbonate from epoxide and CO2. Journal of Environmental Sciences. 2023;126:408-22. doi: org/10.1016/j.jes.2022.04.046
[22] Najafi Z, Esmaili S, Khaleseh B, Babaee S, Khoshneviszadeh M, Chehardoli G, Akbarzadeh T. Ultrasound-assisted synthesis of kojic acid-1,2,3-triazole based dihydropyrano[3,2-b]pyran derivatives using Fe3O4@CQD@CuI as a novel nanomagnetic catalyst. Scientific Reports. 2022;12:19917. doi: org/10.1038/s41598-022-24089-6
[23] Mali M, Dell’Anna MM, Mastrorilli P, Damiani L, Ungaro N, Gredilla A, de Vallejuelo SF-O. Identification of hot spots within harbour sediments through a new cumulative hazard index. Case study: Port of Bari, Italy. Ecological Indicators. 2016;60:548-56. doi: org/10.1016/j.ecolind.2015.07.024
[24] Peres CM, Agathos SN. Biodegradation of nitroaromatic pollutants: From pathways to remediation. Biotechnology Annual Review. 2000;6:197-220. doi: org/10.1016/S1387-2656(00)06023-3
[25] Wirtanen T, Rodrigo E, Waldvogel SR. Recent advances in the electrochemical reduction of substrates involving N− O bonds. Advanced Synthesis & Catalysis. 2020;362(11):2088-101. doi: org/10.1002/adsc.202000349
[26] Begum R, Rehan R, Farooqi ZH, Butt Z, Ashraf S. Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: Past, present, and future. Journal of Nanoparticle Research. 2016;18:1-24. doi: org/10.1007/s11051-016-3536-5
[27] Kalanpour N, Nejati S, Keshipour S. Pd nanoparticles/graphene quantum dot supported on chitosan as a new catalyst for the reduction of nitroarenes to arylamines. Journal of the Iranian Chemical Society. 2021;18:1243-50. doi: org/10.1007/s13738-020-02104-9
[28] Keshipour S, Adak K. Pd (0) supported on N-doped graphene quantum dot modified cellulose as an efficient catalyst for the green reduction of nitroaromatics. RSC Advances. 2016;6(92):89407-12. doi: org/10.1039/C6RA19668C
[29] Dhenadhayalan N, Hsin TH, Lin KC. Multifunctional nanohybrid of palladium nanoparticles encapsulated by carbon‐dots for exploiting synergetic applications. Advanced Materials Interfaces. 2019;6(13):1900361. doi: org/10.1002/admi.201900361
[30] Chen Y, Yang C, Huang X, Li L, Yu N, Xie H, et al. Two-dimensional MXene enabled carbon quantum dots@ Ag with enhanced catalytic activity towards the reduction of p-nitrophenol. RSC Advances. 2022;12(8):4836-42. doi: org/10.1039/D1RA09177H
[31] Liu X, Ma Z, Xing J, Liu H. Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. Journal of Magnetism and magnetic Materials. 2004;270(1-2):1-6. doi: org/10.1016/j.jmmm.2003.07.006
[32] Rafiee F, Tajfar N, Mohammadnejad M. The synthesis and efficiency investigation of a boronic acid-modified magnetic chitosan quantum dot nanocomposite in the detection of Cu2+ ions. International Journal of Biological Macromolecules. 2021;189:477-82. doi: org/10.1016/j.ijbiomac.2021.08.158
[33] Dey D, Bhattacharya T, Majumdar B, Mandani S, Sharma B, Sarma TK. Carbon dot reduced palladium nanoparticles as active catalysts for carbon–carbon bond formation. Dalton Transactions. 2013;42(38):13821-5. doi: org/10.1039/C3DT51234G
[34] Ahmadian-Fard-Fini S, Salavati-Niasari M, Ghanbari D. Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2018;203:481-93. doi: org/10.1016/j.saa.2018.06.021
[35] Janus Ł, Piątkowski M, Radwan-Pragłowska J, Bogdał D, Matysek D. Chitosan-based carbon quantum dots for biomedical applications: Synthesis and characterization. Nanomaterials. 2019;9(2):274. doi: org/10.3390/nano9020274
[36] Wei, Y, Han B, Hu X, Lin Y, Wang X, Deng X. Synthesis of Fe3O4 nanoparticles and their magnetic properties. Procedia Engineering. 2012;27:632-637. doi: org/10.1039/C5CC04476F
[37] Qi B, Di L, Xu W, Zhang X. Dry plasma reduction to prepare a high performance Pd/C catalyst at atmospheric pressure for CO oxidation. Journal of Materials Chemistry A. 2014;2(30):11885-90. doi: org/10.1039/C4TA02155J
[38] Feng Y-S, Ma J-J, Kang Y-M, Xu H-J. PdCu nanoparticles supported on graphene: An efficient and recyclable catalyst for reduction of nitroarenes. Tetrahedron. 2014;70(36):6100-5. doi: org/10.1016/j.tet.2014.04.034
[39] Kim E, Jeong HS, Kim BM. Efficient chemoselective reduction of nitro compounds and olefins using Pd–Pt bimetallic nanoparticles on functionalized multi-wall-carbon nanotubes. Catalysis Communications. 2014;45:25-9. doi: org/10.1016/j.catcom.2013.09.016
[40] Niakan M, Asadi Z. Selective reduction of nitroarenes catalyzed by sustainable and reusable DNA-supported nickel nanoparticles in water at room temperature. Catalysis Letters. 2019;149:2234-46. doi: org/10.1007/s10562-019-02741-7
_||_[1] Innocenzi P, Stagi L. Carbon dots as oxidant-antioxidant nanomaterials, understanding the structure-properties relationship. A critical review. Nano Today. 2023;50:101837. doi :org/10.1016/j.nantod.2023.101837
[2] Barve K, Singh U, Yadav P, Bhatia D. Carbon-based designer and programmable fluorescent quantum dots for targeted biological and biomedical applications. Materials Chemistry Frontiers. 2023;7(9):1781-802. doi: org/10.1039/D2QM01287A
[3] Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP. Carbon dots for multiphoton bioimaging. Journal of the American Chemical Society. 2007;129(37):11318-9. doi: org/10.1021/ja073527l
[4] Wang J, Jiang J, Li F, Zou J, Xiang K, Wang H, Li Y, Li X. Emerging carbon-based quantum dots for sustainable photocatalysis. Green Chemistry. 2023;25(1):32-58. doi: org/10.1039/D2GC03160D
[5] Wang Q, Huang X, Long Y, Wang X, Zhang H, Zhu R, et al. Hollow luminescent carbon dots for drug delivery. Carbon. 2013;59:192-9. doi: org/10.1016/j.carbon.2013.03.009
[6] Hu S, Liu J, Yang J, Wang Y, Cao S. Laser synthesis and size tailor of carbon quantum dots. Journal of Nanoparticle Research. 2011;13:7247–7252. doi: org/10.1007/s11051-011-0638-y
[7] Bao L, Liu C, Zhang ZL, Pang DW. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Advanced Materials. 2015;27:1663-1667. doi: org/10.1002/adma.201405070
[8] Qiao Z-A, Wang Y, Gao Y, Li H, Dai T, Liu Y, Huo Q. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chemical Communications. 2010;46(46):8812-4. doi: org/10.1039/C0CC02724C
[9] Park SY, Lee HU, Park ES, Lee SC, Lee J-W, Jeong SW, Kim CH, Lee YC, Huh YS, Lee J. Photoluminescent green carbon nanodots from food-waste-derived sources: Large-scale synthesis, properties, and biomedical applications. ACS Applied Materials & Interfaces. 2014;6(5):3365-70. doi: org/10.1021/am500159p
[10] Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L, Liu W. Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chemical Communications. 2012;48(64):7955-7. doi: org/10.1039/C2CC33869F
[11] Chen B, Li F, Li S, Weng W, Guo H, Guo T, Zhang X, Chen Y, Huang T, Hong X, You S, Lin Y, Zeng K, Chen S. Large scale synthesis of photoluminescent carbon nanodots and their application for bioimaging. Nanoscale. 2013;5(5):1967-71. doi: org/10.1039/C2NR32675B
[12] Wang J, Gao M, Ho GW. Bidentate-complex-derived TiO2/carbon dot photocatalysts: in situ synthesis, versatile heterostructures, and enhanced H 2 evolution. Journal of Materials Chemistry A. 2014;2(16):5703-9. doi: org/10.1039/C3TA15114J
[13] Das C, Sillanpää M, Zaidi SA, Khan MA, Biswas G. Current trends in carbon-based quantum dots development from solid wastes and their applications. Environmental Science and Pollution Research. 2023;30(16):45528-54. doi: org/10.1007/s11356-023-25822-y
[14] Mehta VN, Jha S, Kailasa SK. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Materials Science and Engineering: C. 2014;38:20-7. doi: org/10.1016/j.msec.2014.01.038
[15] Gholinejad M, Najera C, Hamed F, Seyedhamzeh M, Bahrami M, Kompany-Zareh M. Green synthesis of carbon quantum dots from vanillin for modification of magnetite nanoparticles and formation of palladium nanoparticles: Efficient catalyst for Suzuki reaction. Tetrahedron. 2017;73(38):5585-92. doi: org/10.1016/j.tet.2016.11.014
[16] Gholinejad M, Zareh F, Najera C. Nitro group reduction and Suzuki reaction catalysed by palladium supported on magnetic nanoparticles modified with carbon quantum dots generated from glycerol and urea. Applied Organometallic Chemistry. 2018;32(1):e3984. doi: org/10.1002/aoc.3984
[17] Saipanya S, Waenkaew P, Maturost S, Pongpichayakul N, Promsawan N, Kuimalee S, Namsar O, Income K, Kuntalue B, Themsirimongkon S, Jakmunee J. Catalyst composites of palladium and N-doped carbon quantum dots-decorated silica and reduced graphene oxide for enhancement of direct formic acid fuel cells. ACS Omega. 2022;7(21):17741-55. doi: org/10.1021/acsomega.2c00906
[18] Selim A, Kaur S, Dar AH, Sartaliya S, Jayamurugan G. Synergistic effects of carbon dots and palladium nanoparticles enhance the sonocatalytic performance for rhodamine B degradation in the absence of light. ACS Omega. 2020;5(35):22603-13. doi: org/10.1021/acsomega.0c03312
[19] Shabbir H, Csapó E, Wojnicki M. Carbon Quantum Dots: The role of surface functional groups and proposed mechanisms for metal ion sensing. Inorganics. 2023;11(6):262. doi: org/10.3390/inorganics11060262
[20] Pourmadadi M, Rahmani E, Rajabzadeh-Khosroshahi M, Samadi A, Behzadmehr R, Rahdar A, Ferreira LFR. Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review. Journal of Drug Delivery Science and Technology. 2023:80:104156. doi.: org/10.1016/j.jddst.2023.104156
[21] Gorji ZE, Khodadadi AA, Riahi S, Repo T, Mortazavi Y, Kemell M. Functionalization of nitrogen-doped graphene quantum dot: A sustainable carbon-based catalyst for the production of cyclic carbonate from epoxide and CO2. Journal of Environmental Sciences. 2023;126:408-22. doi: org/10.1016/j.jes.2022.04.046
[22] Najafi Z, Esmaili S, Khaleseh B, Babaee S, Khoshneviszadeh M, Chehardoli G, Akbarzadeh T. Ultrasound-assisted synthesis of kojic acid-1,2,3-triazole based dihydropyrano[3,2-b]pyran derivatives using Fe3O4@CQD@CuI as a novel nanomagnetic catalyst. Scientific Reports. 2022;12:19917. doi: org/10.1038/s41598-022-24089-6
[23] Mali M, Dell’Anna MM, Mastrorilli P, Damiani L, Ungaro N, Gredilla A, de Vallejuelo SF-O. Identification of hot spots within harbour sediments through a new cumulative hazard index. Case study: Port of Bari, Italy. Ecological Indicators. 2016;60:548-56. doi: org/10.1016/j.ecolind.2015.07.024
[24] Peres CM, Agathos SN. Biodegradation of nitroaromatic pollutants: From pathways to remediation. Biotechnology Annual Review. 2000;6:197-220. doi: org/10.1016/S1387-2656(00)06023-3
[25] Wirtanen T, Rodrigo E, Waldvogel SR. Recent advances in the electrochemical reduction of substrates involving N− O bonds. Advanced Synthesis & Catalysis. 2020;362(11):2088-101. doi: org/10.1002/adsc.202000349
[26] Begum R, Rehan R, Farooqi ZH, Butt Z, Ashraf S. Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: Past, present, and future. Journal of Nanoparticle Research. 2016;18:1-24. doi: org/10.1007/s11051-016-3536-5
[27] Kalanpour N, Nejati S, Keshipour S. Pd nanoparticles/graphene quantum dot supported on chitosan as a new catalyst for the reduction of nitroarenes to arylamines. Journal of the Iranian Chemical Society. 2021;18:1243-50. doi: org/10.1007/s13738-020-02104-9
[28] Keshipour S, Adak K. Pd (0) supported on N-doped graphene quantum dot modified cellulose as an efficient catalyst for the green reduction of nitroaromatics. RSC Advances. 2016;6(92):89407-12. doi: org/10.1039/C6RA19668C
[29] Dhenadhayalan N, Hsin TH, Lin KC. Multifunctional nanohybrid of palladium nanoparticles encapsulated by carbon‐dots for exploiting synergetic applications. Advanced Materials Interfaces. 2019;6(13):1900361. doi: org/10.1002/admi.201900361
[30] Chen Y, Yang C, Huang X, Li L, Yu N, Xie H, et al. Two-dimensional MXene enabled carbon quantum dots@ Ag with enhanced catalytic activity towards the reduction of p-nitrophenol. RSC Advances. 2022;12(8):4836-42. doi: org/10.1039/D1RA09177H
[31] Liu X, Ma Z, Xing J, Liu H. Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. Journal of Magnetism and magnetic Materials. 2004;270(1-2):1-6. doi: org/10.1016/j.jmmm.2003.07.006
[32] Rafiee F, Tajfar N, Mohammadnejad M. The synthesis and efficiency investigation of a boronic acid-modified magnetic chitosan quantum dot nanocomposite in the detection of Cu2+ ions. International Journal of Biological Macromolecules. 2021;189:477-82. doi: org/10.1016/j.ijbiomac.2021.08.158
[33] Dey D, Bhattacharya T, Majumdar B, Mandani S, Sharma B, Sarma TK. Carbon dot reduced palladium nanoparticles as active catalysts for carbon–carbon bond formation. Dalton Transactions. 2013;42(38):13821-5. doi: org/10.1039/C3DT51234G
[34] Ahmadian-Fard-Fini S, Salavati-Niasari M, Ghanbari D. Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2018;203:481-93. doi: org/10.1016/j.saa.2018.06.021
[35] Janus Ł, Piątkowski M, Radwan-Pragłowska J, Bogdał D, Matysek D. Chitosan-based carbon quantum dots for biomedical applications: Synthesis and characterization. Nanomaterials. 2019;9(2):274. doi: org/10.3390/nano9020274
[36] Wei, Y, Han B, Hu X, Lin Y, Wang X, Deng X. Synthesis of Fe3O4 nanoparticles and their magnetic properties. Procedia Engineering. 2012;27:632-637. doi: org/10.1039/C5CC04476F
[37] Qi B, Di L, Xu W, Zhang X. Dry plasma reduction to prepare a high performance Pd/C catalyst at atmospheric pressure for CO oxidation. Journal of Materials Chemistry A. 2014;2(30):11885-90. doi: org/10.1039/C4TA02155J
[38] Feng Y-S, Ma J-J, Kang Y-M, Xu H-J. PdCu nanoparticles supported on graphene: An efficient and recyclable catalyst for reduction of nitroarenes. Tetrahedron. 2014;70(36):6100-5. doi: org/10.1016/j.tet.2014.04.034
[39] Kim E, Jeong HS, Kim BM. Efficient chemoselective reduction of nitro compounds and olefins using Pd–Pt bimetallic nanoparticles on functionalized multi-wall-carbon nanotubes. Catalysis Communications. 2014;45:25-9. doi: org/10.1016/j.catcom.2013.09.016
[40] Niakan M, Asadi Z. Selective reduction of nitroarenes catalyzed by sustainable and reusable DNA-supported nickel nanoparticles in water at room temperature. Catalysis Letters. 2019;149:2234-46. doi: org/10.1007/s10562-019-02741-7