Removal of azo dye (Direct Yellow 86) from the wastewater of linen fabric dyeing units using 4-sulfocalixarene
Mojtaba Ghorbani
1
(
Chemistry Department
)
سعید تقوایی گنجعلی
2
(
استاد شیمی آلی دانشگاه آزاد اسلامی واحد تهران شمال
)
ali akbar tarlani
3
(
عضو هیئت علمی
)
مرسده ملک زاده
4
(
)
Keywords: Direct yellow 86, Benesi Hildebrand diagram, 4-sulfocalix[4]arene, Absorption.,
Abstract :
This article presents the synthesis method of 5,11,17,23-para-tert-butyl calix[4]arene and 5,11,17,23- tetrasulfonic acid calix[4]arene (4-S-calix[4]) and the use of 4-S-calix[4], the sulfonated derivative of 5,11,17,23- para tert-butyl calix[4]arenea, as a very efficient molecular host for the adsorption of Direct Yellow 86, an azo dye, in an aqueous environment. Para-tert-butyl calix[4]arene and sulfonated derivative of para-tert-butyl calix[4]arene were identified using Fourier transform infrared spectroscopy (FTIR). Due to its stability and rigid conical form, this chemical displays potency potential in host-guest interactions. Hence, the compound 4-S-calix[4] was used as a guest molecule in order to examine the characteristics of the complex and the absorption intensity of Direct Yellow 86 dye. The estimation of the formation constant (Kf) for the complex between 4-S-calix[4] and DY86 was conducted by comparing the absorption intensity. The formation constant was predicted to be 4.6×104 M-1. The stoichiometric ratio of the compound was discovered to be 1:1 by the use of the Benesi-Hildebrand diagram.
[1] Field JA, Lettinga G, Svitelskaya A, Slenders P, Borger A, Tan NC. Degradation of azo dye Mordant Yellow 10 in a sequential anaerobic and bioaugmented aerobic bioreactor. Water Science and Technology. 2000;42(5-6):337-44. doi: 10.2166/wst.2000.0533
[2] Kokol V, Doliška A, Eichlerová I, Baldrian P, Nerud F. Decolorization of textile dyes by whole cultures of Ischnoderma resinosum and by purified laccase and Mn-peroxidase. Enzyme and Microbial Technology. 2007;40(7):1673-7. doi: 10.1016/j.enzmictec.2006.08.015
[3] Sklyar V, Kalyuzhnyi S. Biomineralisation of azo dyes and their breakdown products in anaerobic-aerobic hybrid and UASB reactors. Water Science and Technology. 2000;41(12):23-30. doi: 10.2166/wst.2000.0233
[4] Moghaddam SS, Moghaddam MR, Arami M. Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology. J Hazard Mater. 2010;175(1-3):651-7. doi: 10.1016/j.jhazmat.2009.10.058
[5] Santos VP, Pereira MF, Faria PC, Órfão JJ. Decolourisation of dye solutions by oxidation with H2O2 in the presence of modified activated carbons. Journal of Hazardous Materials. 2009;162(2-3):736-42. doi: 10.1016/j.jhazmat.2008.05.090
[6] Dabrowski A. Adsorption - from theory to practice. Adv Colloid Interface Sci. 2001;93(1-3):135-224. doi: 10.1016/S0001-8686(00)00082-8
[7] Uzun I. Kinetics of the adsorption of reactive dyes by chitosan. Dyes and Pigments. 2006;70(2):76-83. doi: 10.1016/j.dyepig.2005.04.016
[8] Rodriguez Couto S. Dye removal by immobilised fungi. Biotechnol Adv. 2009;27(3):227-35. doi:10.1016/j.biotechadv.2008.12.001
[9] Praveen S, Jegan J, Bhagavathi Pushpa T, Gokulan R, Bulgariu L. Biochar for removal of dyes in contaminated water: an overview. Biochar. 2022;4(1):1-16. doi: 10.1007/s42773-022-00131-8
[10] Mittal A, Malviya A, Kaur D, Mittal J, Kurup L. Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. J Hazard Mater. 2007;148(1-2):229-40. doi: 10.1016/j.jhazmat.2007.02.028
[11] Lysenko AA, Astashkina OV, Shevchenko AO, Udaltsova NN, Ibragimova RI, Khramkova NV, Timoshenko SI, Kryukova OV. Method of purification of carbon sorbent. RU2141450 patent. 1999.
[12] Namasivayam C, Kavitha D. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes and Pigments. 2002;54(1):47-58. doi: 10.1016/S0143-7208(02)00025-6
[13] Pavan FA, Dias SLP, Lima EC, Benvenutti EV. Removal of Congo red from aqueous solution by anilinepropylsilica xerogel. Dyes and Pigments. 2008;76(1):64-9. doi: 10.1016/j.dyepig.2006.08.027
[14] Lee M, Oh SY, Pathak TS, Paeng IR, Cho BY, Paeng KJ. Selective solid-phase extraction of catecholamines by the chemically modified polymeric adsorbents with crown ether. J Chromatogr A. 2007;1160(1-2):340-4. doi: 10.1016/j.chroma.2007.06.033
[15] Yilmaz E, Memon S, Yilmaz M. Removal of direct azo dyes and aromatic amines from aqueous solutions using two beta-cyclodextrin-based polymers. J Hazard Mater. 2010;174(1-3):592-7. doi: 10.1016/j.jhazmat.2009.09.093
[16] Bilensoy E. Cyclodextrins in pharmaceutics, cosmetics, and biomedicine. US: John Wiley & Sons; 2011. doi: 10.1002/9780470926819
[17] Chen M, Shang T, Fang W, Diao G. Study on adsorption and desorption properties of the starch grafted p-tert-butyl-calix[n]arene for butyl Rhodamine B solution. J Hazard Mater. 2011;185(2-3):914-21. doi: 10.1016/j.jhazmat.2010.09.107
[18] Gutsche CD. Calixarenes: An introduction. UK: Royal Society of Chemistry; 2008. doi: 10.1039/9781847558190
[19] Ryzhkina IS, Kiseleva YV, Murtazina LI, Solovieva SE, Manin NG, Konovalov AI. Disperse systems based on a dodecyl derivative of p-sulfonatocalix[6]arene: Self-organization and physicochemical properties in a wide range of concentrations and temperatures. Macroheterocycles. 2017;10(2):190-5. doi: 10.6060/mhc170518r
[20] Habibi Z, Taghvaei-Ganjali S, Zadmard R, Mehrazar M. Calixarene dimers as host molecules for inositol hexaphosphate, IP6, in aqueous solution. Letters in Organic Chemistry. 2018;15(9):747-52. doi: 10.2174/1570178615666171221142658
[21] Sgarlata C, Bonaccorso C, Gulino FG, Zito V, Arena G, Sciotto D. Inclusion of aromatic and aliphatic anions into a cationic water-soluble calix[4]arene at different pH values. Tetrahedron Letters. 2009;50(14):1610-3. doi: 10.1016/j.tetlet.2009.01.100
[22] Tian L, Zhou S, Zhao J, Xu Q, Li N, Chen D, et al. Sulfonate-modified calixarene-based porous organic polymers for electrostatic enhancement and efficient rapid removal of cationic dyes in water. J Hazard Mater. 2023;441:129873. doi: 10.1016/j.jhazmat.2022.129873
[23] Taghvaei-Ganjali S, Zadmard R, Saber-Tehrani M. Immobilization of chlorosulfonyl-calix[4]arene onto the surface of silica gel through the directly estrification. Applied Surface Science. 2012;258(16):5925-32. doi: 10.1016/j.apsusc.2011.09.019
[24] Razaghian F, Taghvaei-Ganjali S, Hashemi MM, Zadmard R, Dehaghi SM. Copper-catalyzed synthesis of a novel inherently chiral calix[4]arene pyrazine derivative. Letters in Organic Chemistry. 2018;15(11):922-5. doi: 10.2174/1570178615666180412121751
[25] Lakomehsari KR, Ganjali ST, Zadmard R, Roshan M. A novel azo-calixaren derivative based on 2,6-diamino pyridine: Synthesis, characterization and antibacterial evaluation. Letters in Organic Chemistry. 2017;14(4):300-4. doi: 10.2174/1570178614666170321122533
[26] Hassibi E, Ganjali ST, Hashemi MM, Zadmard R, Dehaghi SM. Conformational mobility study in mono quinone derivative of calix[4]arene by low temperature NMR spectroscopy. Letters in Organic Chemistry. 2020;17(2):101-6. doi: 10.2174/1570178616666190228130119
[27] Gutsche CD, Iqbal M, Stewart D. Calixarenes. 19. Syntheses procedures for p-tert-butylcalix[4]arene. The Journal of Organic Chemistry. 2002;51(5):742-5. doi: 10.1021/jo00355a033
[28] Lamartine R, De Vains JB, Choquard P, Marcillac A, inventors. Transdiffusia SA, assignee. Process for the dealkylating sulfonation of p-alkyl calixarenes. US5,952,526 patent. 1999.
[29] Furer VL, Borisoglebskaya EI, Zverev VV, Kovalenko VI. The hydrogen bonding and conformations of p-tert-butylcalix[4]arene as studied by IR spectroscopy and by DFT calculations. Spectrochim Acta A Mol Biomol Spectrosc. 2005;62(1-3):483-93. doi: 10.1016/j.saa.2005.02.001
[30] Handayani D, Frimadasi W, Kusumaningsih T, editors. Synthesis and characterization of chitosan-pt-butylcalix[4]arene acid. IOP Conference Series: Materials Science and Engineering. 2018. doi: 10.1088/1757-899X/333/1/012011