The role of metal and non-metal nano oxides in improving the physical properties of drugsin drug formulation
Subject Areas :Somaye Golsanamlou 1 , Aliakbar Tarlani 2
1 - PhD Student of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran (CCERCI), Tehran. Iran.
2 - Associate Prof. of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran (CCERCI), Tehran, Iran.
Keywords: Alumina, Biocompatible, Solubility, Drug delivery, Metal and non-metal oxides,
Abstract :
In this review article, the role of porous inorganic oxide compounds as drug carriers in order to improve the physical properties of drugs is discussed. Solubility and permeability of drugs in the digestive system is one of the determining factors of oral bioavailability of drugs. There have always been drugs whose solubility needed to be optimized to prepare a suitable oral formula. Today, as a result of extensive research and the emergence of new drugs, the number of drugs that have solubility problems has increased, including some cardiac drugs that are in the second class of drugs and have low solubility. The low solubility of these types of drugs has caused therapeutic limitations because to increase the effectiveness of these drugs, a higher dose of them has to be prescribed which causes the drug to accumulate in the blood and deposit in the blood vessel wall. Therefore, drugs need a drug carrier to improve their performance. Drug delivery systems (DDS) including biodegradable polymer nanoparticles, polymer micelles, solid nanoparticles, nanoliposomes, dendrimers, magnetic nanoparticles and quantum dots have been used for this purpose for decades. However, in recent years, the use of metal and non-metal oxides in modern drug delivery systems has attracted the attention of scientists. Compared to other conventional compounds, these inorganic porous compounds have many advantages, including improving solubility and stability, the possibility of controlling the drug dosage, controlling the kinetics of drug release, delivering the drug to the target tissue, reducing side effects, increasing the biocompatibility of the drug, etc. Therefore, the use of new drug delivery systems based on the new generation of metal and non-metal oxides in order to improve the solubility, permeability and biocompatibility of drugs is an important and essential step in the formulation of drugs, which has been discussed in this article.
[1] Ku, M.S.; AAPS J. 10, 208–212, 2008.
[2] Ku, M.S.; Dulin, W.; Pharm. Dev. Technol. 17, 285–302, 2012.
[3] Tarlani, A.; Najarzadeh, Z.; Mohammadian, N.; Darhkosh, F.; "Nanopaticles and Drug Delivery: Methods and Applications", Farmanesh, Tehran, 1395.
[4] Gandhi, R.; Sharma, B.K.; Al-Mdallal, Q.M.; Mittal, H.V.R.; Int. J. Thermofluids. 18, 100336, 2023.
[5] Vahabi, L.; Ranjbar, P.R.; Davar, F.; J. Drug Deliv. Sci. Technol. 80, 104144, 2023.
[6] Uribe-Robles, M.; Ortiz-Islas, E.; Rodriguez-Perez, E.; Valverde, F.F.; T. Lim, T.; Martinez-Morales, A.A.; Biomater. Adv. 213442, 2023.
[7] Li, J.; Yang, N.; Yang, M.; Lu, C.; Xie, M.; Colloids Surfaces B Biointerfaces. 213, 112389, 2022.
[8] Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R.; Pharm. Res. 12, 413–420, 1995.
[9] Kawabata, Y.; Wada, K.; Nakatani, M.; Yamada, S.; S. Onoue, S.; Int. J. Pharm. 420, 1–10, 2011.
[10] Fasano, A.; Trends Biotechnol. 16, 152–157, 1998.
[11] Gu, S.H.; Nicolas, V.; Lalis, A.; Sathirapongsasuti, N.; R. Yanagihara, R.; Infect. Genet. Evol. 20, 118–123, 2013.
[12] Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G.; Expert Opin. Drug Deliv. 7, 1063–1077, 2010.
[13] T. López, T.; E. Ortiz, E.; Meza,D.; Basaldella, E.; X. Bokhimi, X.; A. Sepúlveda, A.; Rodríguez, F.; Ruiz, J.; Maga, C.; Material chemistry and physics 126, 922–929, 2011.
[14] Carriazo, D.; Del Arco, M.; Martín, C.; Ramos, C.; Rives, V.; Microporous Mesoporous Mater. 130, 229–238, 2010.
[15] Zhu, J.; Liao, L.; Bian, X.; Kong, J.; Yang, P.; Liu, B.; Small 8, 2715–2720, 2012.
[16] Wang, T.; Jiang, H.; Wan, L.; Zhao, Q.; Jiang, T.; Wang, B.; Wang, S.; Acta Biomater. 13 354–363, 2015.
[17] Swath,T.;, Krishna M, V.; Kumar. D, S.; Krishnaveni, J.; J. Pharm. Sci. Innov. 2, 36–40, 2013.
[18] Lipinski, C.A.; J. Pharmacol. Toxicol. Methods 44, 235–249, 2000.
[19] Hörter, D.; Dressman, J.B.; Adv. Drug Deliv. Rev. 46, 75–87, 2001.
[20] Markovic, M.; Ben-Shabat, S.; Dahan, A.; Pharmaceutics12, 1031, 2020.
[21] Seedher, N.; Bhatia, S.; Aaps Pharmscitech 4, 36–44, 2003.
[22] Xia, D.; Cui, F.; Piao, H.; Cun,D.; Piao, H.; Jiang, Y.; Ouyang, M.; Quan, P.; Pharm. Res. 27, 1965–1976, 2010.
[23] Ren, Y.; Feng, Y.; Xu, K.; Yue, S.; Yang, T.; Nie, K.; Xu, M.; Xu, H.; Xiong, X.; Körte, F.; Front. Pharmacol.12, 721988, 2021.
[24] Tran, P.H.-L.; Tran, T.T.-D.; Lee, K.-H.; Kim, D.-J.; Lee, B.-J.; Expert Opin. Drug Deliv. 7, 647–661, 2010.
[25] Singh, M.; Kongsted, J.; Zhan, P.; Banerjee, U.C.; Poongavanam, V.; Murugan, N.A.; "Differential Molecular Interactions of Telmisartan: Molecular-Level Insights from Spectral and Computational Studies", ChemRxiv, Cambridge, 2022.
[26] Natarajan, J.V.; Nugraha, C.; J.; Ng, X.W.; Venkatraman, S.; J. Control. Release 193, 122–138, 2014.
[27] Wan, M.M.; Yang, J.Y.; Qiu, Y.; Zhou, Y.; Guan, C.X.; Hou, Q.; Lin, W.G.; Zhu, J.H.; ACS Appl. Mater. Interfaces. 4, 4113–4122, 2012.
[28] Busca G.; Advances in catalysis 57, 319-404, 2014.
[29] Tarlani, A.; Abedini, M.; Nemati, A.; Khabaz, M.; Amini, M.M.; J. Colloid and Interface Sci. 303, 32–38, 2006.
[30] Tarlani, A.; Abedini, M.; Khabaz, M.; Amini, M.M.; J. Colloid and Interface Sci. 292, 486–492, 2005.
[31] Song, L.; Bin Park, S.; Nanosci Nanotechnol. 10, 122-129, 2010.
[32] Meng, X.; Duan, L.; Qin, H.; Xie, X.; Umar A.; Wang, H.; Wang, Q.; Journal of nanoscince and nanotechnology 14, 7340–7344, 2014.
[33] Farahmandjou, M.; olabiyan, N.; Journal of ceramic Processing Research 16,237–240, 2015.
[34] Sifontes, A.B.; Gutierrez, B.; Mónaco, A.; Yanez, A.; Díaz, Y.; Méndez, F.J.; Llovera, L.; Cañizales, E.; Brito, J.L.; Biotechnol. Reports. 4, 21–29, 2014.
[35] Tarlani, A.; Joharian, M.; Narimani, K.; Muzart, J.; Fallah, M.; J. Solid State Chem. 203, 255–259, 2013.
[36] Frozandehmehr, E.; Tarlani, A.; Farhadi, S.; Langmuir 35, 11188–11199, 2019.
[37] Das, S.K.; Kapoor, S.; Yamada, H.; Bhattacharyya, A.J.; Microporous Mesoporous Mater. 118, 267–272, 2009.
[38] S. Nastase, S.; Bajenaru, L.; Matei, C.; Mitran, R.A.; Berger, D.; Microporous Mesoporous Mater. 182, 32–39. 2013.
[39] San Roman, S.; Gullón, j.; Del Arco, M.; C. Martín, C.; J. Pharm. Sci. 105, 2146–2154, 2016.
[40] Alem, M.; Tarlani, A.; Aghabozorg, H.R.; RSC Adv. 7, 38935–38944, 2017.
[41] Khazraei, A.; Tarlani, A.; Naderi, N.; Muzart, J.; Abdulhameed, Z.; Eslami-Moghadam, M.; Appl. Surf. Sci. 422, 873–882, 2017.
[42] Tarlani, A.; Zarabadi, M.P.; Solid State Sci. 16, 76–80, 2013.
[43] Rad, B.A.; Tarlani, A.; Jameh-Bozorghi, S.; Niazi, A.; J. Sol-Gel Sci. Technol. 83, 627–639, 2017.
[44] Alem, A.; Tarlani, A.; Aghabozorg, H.R.; Khosravi, M.; J. Applied Research in Chemistry 13(1), 49-59, 2019.
[45] A. Tarlani, A.; Isari, M.; Khazraei, A.; Nanomedicine Res. J. 2, 28–35, 2017.
[46] Kaneda, M.; Tsubakiyama, T.; Carlsson, A.; Sakamoto, Y.; J. Phys. Chem. B 106, 1256–1266, 2002.
[47] Jabbari-hichri, A.; Bennici, S.; Auroux, A.; Sol. Energy Mater. Sol. Cells. 149, 232–241, 2016.
[48] Rajabi, F.; Fayyaz, F.; Luque, R.; Microporous Mesoporous Mater. 253, 64–70, 2017.
[49] Rathinavel, S.; Indrakumar, J.; Korrapati, P.S.; Dharmalingam, S.; Colloids Surfaces A Physicochem. Eng. Asp. 637, 128185, 2022.
[50] Ulagesan, S.; Santhamoorthy, M.; Phan, T.T.V.; Alagumalai, K.; Thirupathi, K.; Kim, S.-C.; Nam, T.-J.; Choi, Y.-H.; Inorg. Chem. Commun. 146, 110132, 2022.
[51] Galhano, J.; Marcelo, G.A.; Duarte, M.P.; Oliveira, E.; Bioorg. Chem.118, 105470, 2022.
[52] Atiyah, N.A.; Atiya, M.A.; Albayati, T.M.; Eng. Technol. J. 40, 472–483, 2022.
[53] Jiang, H.; Wang, T.; Wang, L.; Sun, C.; Jiang, T.; Cheng, G.; Wang, S.; Microporous Mesoporous Mater.153, 124–130, 2012.
[54] Signoretto, M.; Ghedini, E.; Nichele,V.; Pinna, F.; Crocell,V.; Cerrato,G.; Microporous Mesoporous Mater. 139, 189–196, 2011.
[55] Dinh, C.; Nguyen, T.; Kleitz, F.; Do, T.; ACS Nano. 3, 3737–3743, 2009.
[56] Tiainen, H.; Wiedmer, D.; Haugen, H.J.; J. Eur. Ceram. Soc. 33, 15–24, 2013.
[57] Wang, Z.; Xie, C.; Luo, F.; Li, P.; Xiao, X.; Appl. Surf. Sci. 324, 621–626, 2015.
[58] Shin, H.S.; Jo, C.; Ko, S.H.; Ryoo, R.; Microporous Mesoporous Mater. 212, 117–124, 2015.
[59] Hattori, M.; Kamata, K.; Hara, M.; Phys. Chem. Chem. Phys. 19, 3688–3693, 2017.
[60] Signoretto, M.; Ghedini, E.; Nichele, V.; Pinna, F.; Crocellà, V.; Cerrato, G.; Microporous Mesoporous Mater. 139, 189–196, 2011.
[61] Lopez, T.; Ortiz, E.; Meza, D.; Basaldella, E.; Bokhimi, a.; Magana, C.; Sepulveda, A.; Rodriguez, F.; Ruiz, j.; Mater. Chem. Phys. 126, 922–929, 2011.
[62] Habibi, M.; Aghabozorg, H.R.; Tarlani, A.; Mater. Chem. Phys. 212, 308–317, 2018.
[63] Habibi, M.; Aghabozorg, H.R.; Tarlani, A.; Abedi, A.; J. Applied Research in Chemistry 12(2), 131-140, 2018.
[64] Chimenos, J.; Fernández, A.; Villalba, G.; Segarra, M.; Urruticoechea, A.; B. Artaza, B.; F. Espiell, F.; Water Res. 37, 1601–1607, 2003.
[65] Roggenbuck, J.; Tiemann, M.; Am. Chem. Soc. 127, 1096–1097, 2005.
[66] Hadia, N.M.A.; Mohamed, H.A.H.; Mater. Sci. Semicond. Process 29, 238–244, 2015.
[67] Bhagiyalakshmi, M.; Hemalatha, P.; Ganesh, M.; Mei, P.M.; Jang, H.T.; Fuel 90, 1662–1667, 2011.
[68] Feng, J.; Zou, L.; Wang, Y.; Li, B.; He, X.; Fan, Z.; Ren, Y.; Lv, Y.; Zhang, M.; Chen, D.; J. Colloid Interface Sci. 438, 259–267, 2015.
[69] Mortazavi, G.; Mobasherpour, I.; Rad, E.M.; J. Ceram. Process. Res. 15, 88–92, 2014.
[70] Cao, C.Y.; Qu, J.; Wei, F.; Liu, H.; Song, W.G.; ACS Appl. Mater. Interfaces 4, 4283–4287, 2012.
[71] Antunes, W.M.; Veloso, C.D.; Henriques, C.A.; Catal. Today 133(135), 548–554, 2008.
[72] Zhao, J.; Mu, F.; Qin, L.; Jia, X.; Yang, C.; Mater. Chem. Phys. 166, 176–181, 2015.
[73] Wu, C.C.; Cao, X.; Wen, Q.; Wang, Z.; Gao, Q.; Zhu, H.; Talanta, 79, 1223–1227, 2009.
[74] Umar, A.; Rahman, M.M.; Hahn,Y.; Electrochem. Commun. 11, 1353–1357, 2009.
[75] Kim, H.W.; Shim, S.H,; Lee, J.W.; Kebede, M.A.; Yang,H.-H.; Kong, M.H.; Choi, S.M.; Yang, J.-H.; Bang, H.-J.; Kim, H.Y.; Surface and Coating Technology, 202(11), 2503–2508, 2008.
[76] Stoimenov, P.K.; Klinger, R.L.; Marchin, G.L.; Klabunde, K.J.; Langmuir 18, 6679–6686, 2002.
[77] Ariga, K.; Kawakami, K.; Ebara, M.; Kotsuchibashi, Y.; Ji, Q.; Hill, J.P.; New J. Chem. 38, 5149–5163, 2014.
[78] Feinle, A.; Heugenhauser, A.; Hüsing, N.; J. Supercrit. Fluids. 106, 133–139, 2015.
[79] Alexa, I.F.; Ignat, M.; Popovici, R.F.; Timpu, D.; Popovici, E.; Int. J. Pharm. 436, 111–119, 2012.
[80] Somanathan, T.; Krishna, V.M.; Saravanan, V.; Kumar, Raj.; Kumar, Ran.; Journal of Nanoscience and Nanotechnology16(9), 9421–9431, 2016.
[81] Choi, J.S.; Moon, S.H.; Kim, J.H. Kim, G.H..; Curr. Appl. Phys. 10, 1378–1382, 2010.
[82] Florentina, I.; Ignat, M.; Florentina, R.; Timpu, D.; Popovici, E.; Int. J. Pharm. 436, 111–119, 2012.
[83] Abedi, B.; Tarlani, A.; Jamebozorgi, S.; Niazi, A.; J. Applied Research in Chemistry 11(4), 29-37, 2018.
_||_[1] Ku, M.S.; AAPS J. 10, 208–212, 2008.
[2] Ku, M.S.; Dulin, W.; Pharm. Dev. Technol. 17, 285–302, 2012.
[3] Tarlani, A.; Najarzadeh, Z.; Mohammadian, N.; Darhkosh, F.; "Nanopaticles and Drug Delivery: Methods and Applications", Farmanesh, Tehran, 1395.
[4] Gandhi, R.; Sharma, B.K.; Al-Mdallal, Q.M.; Mittal, H.V.R.; Int. J. Thermofluids. 18, 100336, 2023.
[5] Vahabi, L.; Ranjbar, P.R.; Davar, F.; J. Drug Deliv. Sci. Technol. 80, 104144, 2023.
[6] Uribe-Robles, M.; Ortiz-Islas, E.; Rodriguez-Perez, E.; Valverde, F.F.; T. Lim, T.; Martinez-Morales, A.A.; Biomater. Adv. 213442, 2023.
[7] Li, J.; Yang, N.; Yang, M.; Lu, C.; Xie, M.; Colloids Surfaces B Biointerfaces. 213, 112389, 2022.
[8] Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R.; Pharm. Res. 12, 413–420, 1995.
[9] Kawabata, Y.; Wada, K.; Nakatani, M.; Yamada, S.; S. Onoue, S.; Int. J. Pharm. 420, 1–10, 2011.
[10] Fasano, A.; Trends Biotechnol. 16, 152–157, 1998.
[11] Gu, S.H.; Nicolas, V.; Lalis, A.; Sathirapongsasuti, N.; R. Yanagihara, R.; Infect. Genet. Evol. 20, 118–123, 2013.
[12] Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G.; Expert Opin. Drug Deliv. 7, 1063–1077, 2010.
[13] T. López, T.; E. Ortiz, E.; Meza,D.; Basaldella, E.; X. Bokhimi, X.; A. Sepúlveda, A.; Rodríguez, F.; Ruiz, J.; Maga, C.; Material chemistry and physics 126, 922–929, 2011.
[14] Carriazo, D.; Del Arco, M.; Martín, C.; Ramos, C.; Rives, V.; Microporous Mesoporous Mater. 130, 229–238, 2010.
[15] Zhu, J.; Liao, L.; Bian, X.; Kong, J.; Yang, P.; Liu, B.; Small 8, 2715–2720, 2012.
[16] Wang, T.; Jiang, H.; Wan, L.; Zhao, Q.; Jiang, T.; Wang, B.; Wang, S.; Acta Biomater. 13 354–363, 2015.
[17] Swath,T.;, Krishna M, V.; Kumar. D, S.; Krishnaveni, J.; J. Pharm. Sci. Innov. 2, 36–40, 2013.
[18] Lipinski, C.A.; J. Pharmacol. Toxicol. Methods 44, 235–249, 2000.
[19] Hörter, D.; Dressman, J.B.; Adv. Drug Deliv. Rev. 46, 75–87, 2001.
[20] Markovic, M.; Ben-Shabat, S.; Dahan, A.; Pharmaceutics12, 1031, 2020.
[21] Seedher, N.; Bhatia, S.; Aaps Pharmscitech 4, 36–44, 2003.
[22] Xia, D.; Cui, F.; Piao, H.; Cun,D.; Piao, H.; Jiang, Y.; Ouyang, M.; Quan, P.; Pharm. Res. 27, 1965–1976, 2010.
[23] Ren, Y.; Feng, Y.; Xu, K.; Yue, S.; Yang, T.; Nie, K.; Xu, M.; Xu, H.; Xiong, X.; Körte, F.; Front. Pharmacol.12, 721988, 2021.
[24] Tran, P.H.-L.; Tran, T.T.-D.; Lee, K.-H.; Kim, D.-J.; Lee, B.-J.; Expert Opin. Drug Deliv. 7, 647–661, 2010.
[25] Singh, M.; Kongsted, J.; Zhan, P.; Banerjee, U.C.; Poongavanam, V.; Murugan, N.A.; "Differential Molecular Interactions of Telmisartan: Molecular-Level Insights from Spectral and Computational Studies", ChemRxiv, Cambridge, 2022.
[26] Natarajan, J.V.; Nugraha, C.; J.; Ng, X.W.; Venkatraman, S.; J. Control. Release 193, 122–138, 2014.
[27] Wan, M.M.; Yang, J.Y.; Qiu, Y.; Zhou, Y.; Guan, C.X.; Hou, Q.; Lin, W.G.; Zhu, J.H.; ACS Appl. Mater. Interfaces. 4, 4113–4122, 2012.
[28] Busca G.; Advances in catalysis 57, 319-404, 2014.
[29] Tarlani, A.; Abedini, M.; Nemati, A.; Khabaz, M.; Amini, M.M.; J. Colloid and Interface Sci. 303, 32–38, 2006.
[30] Tarlani, A.; Abedini, M.; Khabaz, M.; Amini, M.M.; J. Colloid and Interface Sci. 292, 486–492, 2005.
[31] Song, L.; Bin Park, S.; Nanosci Nanotechnol. 10, 122-129, 2010.
[32] Meng, X.; Duan, L.; Qin, H.; Xie, X.; Umar A.; Wang, H.; Wang, Q.; Journal of nanoscince and nanotechnology 14, 7340–7344, 2014.
[33] Farahmandjou, M.; olabiyan, N.; Journal of ceramic Processing Research 16,237–240, 2015.
[34] Sifontes, A.B.; Gutierrez, B.; Mónaco, A.; Yanez, A.; Díaz, Y.; Méndez, F.J.; Llovera, L.; Cañizales, E.; Brito, J.L.; Biotechnol. Reports. 4, 21–29, 2014.
[35] Tarlani, A.; Joharian, M.; Narimani, K.; Muzart, J.; Fallah, M.; J. Solid State Chem. 203, 255–259, 2013.
[36] Frozandehmehr, E.; Tarlani, A.; Farhadi, S.; Langmuir 35, 11188–11199, 2019.
[37] Das, S.K.; Kapoor, S.; Yamada, H.; Bhattacharyya, A.J.; Microporous Mesoporous Mater. 118, 267–272, 2009.
[38] S. Nastase, S.; Bajenaru, L.; Matei, C.; Mitran, R.A.; Berger, D.; Microporous Mesoporous Mater. 182, 32–39. 2013.
[39] San Roman, S.; Gullón, j.; Del Arco, M.; C. Martín, C.; J. Pharm. Sci. 105, 2146–2154, 2016.
[40] Alem, M.; Tarlani, A.; Aghabozorg, H.R.; RSC Adv. 7, 38935–38944, 2017.
[41] Khazraei, A.; Tarlani, A.; Naderi, N.; Muzart, J.; Abdulhameed, Z.; Eslami-Moghadam, M.; Appl. Surf. Sci. 422, 873–882, 2017.
[42] Tarlani, A.; Zarabadi, M.P.; Solid State Sci. 16, 76–80, 2013.
[43] Rad, B.A.; Tarlani, A.; Jameh-Bozorghi, S.; Niazi, A.; J. Sol-Gel Sci. Technol. 83, 627–639, 2017.
[44] Alem, A.; Tarlani, A.; Aghabozorg, H.R.; Khosravi, M.; J. Applied Research in Chemistry 13(1), 49-59, 2019.
[45] A. Tarlani, A.; Isari, M.; Khazraei, A.; Nanomedicine Res. J. 2, 28–35, 2017.
[46] Kaneda, M.; Tsubakiyama, T.; Carlsson, A.; Sakamoto, Y.; J. Phys. Chem. B 106, 1256–1266, 2002.
[47] Jabbari-hichri, A.; Bennici, S.; Auroux, A.; Sol. Energy Mater. Sol. Cells. 149, 232–241, 2016.
[48] Rajabi, F.; Fayyaz, F.; Luque, R.; Microporous Mesoporous Mater. 253, 64–70, 2017.
[49] Rathinavel, S.; Indrakumar, J.; Korrapati, P.S.; Dharmalingam, S.; Colloids Surfaces A Physicochem. Eng. Asp. 637, 128185, 2022.
[50] Ulagesan, S.; Santhamoorthy, M.; Phan, T.T.V.; Alagumalai, K.; Thirupathi, K.; Kim, S.-C.; Nam, T.-J.; Choi, Y.-H.; Inorg. Chem. Commun. 146, 110132, 2022.
[51] Galhano, J.; Marcelo, G.A.; Duarte, M.P.; Oliveira, E.; Bioorg. Chem.118, 105470, 2022.
[52] Atiyah, N.A.; Atiya, M.A.; Albayati, T.M.; Eng. Technol. J. 40, 472–483, 2022.
[53] Jiang, H.; Wang, T.; Wang, L.; Sun, C.; Jiang, T.; Cheng, G.; Wang, S.; Microporous Mesoporous Mater.153, 124–130, 2012.
[54] Signoretto, M.; Ghedini, E.; Nichele,V.; Pinna, F.; Crocell,V.; Cerrato,G.; Microporous Mesoporous Mater. 139, 189–196, 2011.
[55] Dinh, C.; Nguyen, T.; Kleitz, F.; Do, T.; ACS Nano. 3, 3737–3743, 2009.
[56] Tiainen, H.; Wiedmer, D.; Haugen, H.J.; J. Eur. Ceram. Soc. 33, 15–24, 2013.
[57] Wang, Z.; Xie, C.; Luo, F.; Li, P.; Xiao, X.; Appl. Surf. Sci. 324, 621–626, 2015.
[58] Shin, H.S.; Jo, C.; Ko, S.H.; Ryoo, R.; Microporous Mesoporous Mater. 212, 117–124, 2015.
[59] Hattori, M.; Kamata, K.; Hara, M.; Phys. Chem. Chem. Phys. 19, 3688–3693, 2017.
[60] Signoretto, M.; Ghedini, E.; Nichele, V.; Pinna, F.; Crocellà, V.; Cerrato, G.; Microporous Mesoporous Mater. 139, 189–196, 2011.
[61] Lopez, T.; Ortiz, E.; Meza, D.; Basaldella, E.; Bokhimi, a.; Magana, C.; Sepulveda, A.; Rodriguez, F.; Ruiz, j.; Mater. Chem. Phys. 126, 922–929, 2011.
[62] Habibi, M.; Aghabozorg, H.R.; Tarlani, A.; Mater. Chem. Phys. 212, 308–317, 2018.
[63] Habibi, M.; Aghabozorg, H.R.; Tarlani, A.; Abedi, A.; J. Applied Research in Chemistry 12(2), 131-140, 2018.
[64] Chimenos, J.; Fernández, A.; Villalba, G.; Segarra, M.; Urruticoechea, A.; B. Artaza, B.; F. Espiell, F.; Water Res. 37, 1601–1607, 2003.
[65] Roggenbuck, J.; Tiemann, M.; Am. Chem. Soc. 127, 1096–1097, 2005.
[66] Hadia, N.M.A.; Mohamed, H.A.H.; Mater. Sci. Semicond. Process 29, 238–244, 2015.
[67] Bhagiyalakshmi, M.; Hemalatha, P.; Ganesh, M.; Mei, P.M.; Jang, H.T.; Fuel 90, 1662–1667, 2011.
[68] Feng, J.; Zou, L.; Wang, Y.; Li, B.; He, X.; Fan, Z.; Ren, Y.; Lv, Y.; Zhang, M.; Chen, D.; J. Colloid Interface Sci. 438, 259–267, 2015.
[69] Mortazavi, G.; Mobasherpour, I.; Rad, E.M.; J. Ceram. Process. Res. 15, 88–92, 2014.
[70] Cao, C.Y.; Qu, J.; Wei, F.; Liu, H.; Song, W.G.; ACS Appl. Mater. Interfaces 4, 4283–4287, 2012.
[71] Antunes, W.M.; Veloso, C.D.; Henriques, C.A.; Catal. Today 133(135), 548–554, 2008.
[72] Zhao, J.; Mu, F.; Qin, L.; Jia, X.; Yang, C.; Mater. Chem. Phys. 166, 176–181, 2015.
[73] Wu, C.C.; Cao, X.; Wen, Q.; Wang, Z.; Gao, Q.; Zhu, H.; Talanta, 79, 1223–1227, 2009.
[74] Umar, A.; Rahman, M.M.; Hahn,Y.; Electrochem. Commun. 11, 1353–1357, 2009.
[75] Kim, H.W.; Shim, S.H,; Lee, J.W.; Kebede, M.A.; Yang,H.-H.; Kong, M.H.; Choi, S.M.; Yang, J.-H.; Bang, H.-J.; Kim, H.Y.; Surface and Coating Technology, 202(11), 2503–2508, 2008.
[76] Stoimenov, P.K.; Klinger, R.L.; Marchin, G.L.; Klabunde, K.J.; Langmuir 18, 6679–6686, 2002.
[77] Ariga, K.; Kawakami, K.; Ebara, M.; Kotsuchibashi, Y.; Ji, Q.; Hill, J.P.; New J. Chem. 38, 5149–5163, 2014.
[78] Feinle, A.; Heugenhauser, A.; Hüsing, N.; J. Supercrit. Fluids. 106, 133–139, 2015.
[79] Alexa, I.F.; Ignat, M.; Popovici, R.F.; Timpu, D.; Popovici, E.; Int. J. Pharm. 436, 111–119, 2012.
[80] Somanathan, T.; Krishna, V.M.; Saravanan, V.; Kumar, Raj.; Kumar, Ran.; Journal of Nanoscience and Nanotechnology16(9), 9421–9431, 2016.
[81] Choi, J.S.; Moon, S.H.; Kim, J.H. Kim, G.H..; Curr. Appl. Phys. 10, 1378–1382, 2010.
[82] Florentina, I.; Ignat, M.; Florentina, R.; Timpu, D.; Popovici, E.; Int. J. Pharm. 436, 111–119, 2012.
[83] Abedi, B.; Tarlani, A.; Jamebozorgi, S.; Niazi, A.; J. Applied Research in Chemistry 11(4), 29-37, 2018.