Simultaneous determination of dopamine and tryptophan using modified glassy carbon electrode with dandelion like Co3O4 nanoflowers
Subject Areas :Najmeh Sheybani 1 , Shohreh Jahani 2 , Mohammad Mehdi Foroughi 3
1 - PhD student in Analytical Chemistry, Islamic Azad University, Kerman Branch, Iran.
2 - Assistant Professor in Inorganic Chemistry, Bam University of Medical Sciences, Bam, Iran
3 - Assistant Professor of Analytical Chemistry, Islamic Azad University, Kerman Branch, Iran.
Keywords: Dopamine, Voltammetry, tryptophan, Dandelion like Co3O4 nanoflower,
Abstract :
In this work glassy carbon electrode modified with dandelion like Co3O4 nanoflower is proposed as an electrochemical sensor to achieve a high-sensitivity electrochemical sensor. The morphology and purity of synthesized nanoflowers are characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectrometer (EDX). Then electro-oxidation of the dopamine and tryptophan at the modified electrode surface was studied using cyclic voltammetry, chronoamperometry and differential pulse voltammetry. Under optimized conditions, the differential pulse voltammetric pulse current increased with increasing dopamine concentration in the range of 0.1 to 0.900 μM and the detection limit of dopamine was calculated as 0.01 μM. The modified electrode showed a very good resolution between voltammetric peak of dopamine and tryptophan, making it suitable for detecting dopamine in the presence of tryptophan in real samples. High sensitivity and good repeatability of the electrode along with low detection limit can be mentioned as outstanding features of this electrode. This sensor was successfully used to accurately determine of dopamine and tryptophan in ampoules and urine samples.
[1] Iranmanesh, T.; Foroughi, M.M.; Jahani, Sh.; Shahidi Zandi, M.; Hassani Nadiki, M.; Talanta 207, 120318, 2020.
[2] Yılmaz, C.; Gökmen, V.; Food Chem. 243, 420-441, 2018.
[3] Goya, R.N.; Bishnoi, S.; Chasta, H.; Abdul Aziz, M.; Oyama, M.; Talanta 85, 2626, 2011.
[4] Chen, G.Y.; Zhong, W.; Zhou, Z.; Zhang, Q.; Anal. Chim. Acta. 1037, 200-215, 2018.
[5] Fitznar, H.P.; Lobbes, J.M.; Kattner, G.; J. Chromatogr. A. 832, 123-140, 1999.
[6] Reynolds, D.M.; Water Res. 37, 3055-3069, 2003.
[7] Duan, H.; Wang, L.; Li, X.; Wang, Y.; Li, J.; Luo C.; Electrochim. Acta. A. 139, 374-391, 2015.
[8] Fang, H.; Pajski, M.L.; Ross, A.E.; Venton, B.J.; Anal. Methods 5, 2704-2428, 2013.
[9] Sikorska, E.; Gliszczynskaswiglo, A.; Insinskarak, M.; Khmelinskii, I.; Dekeukeleire, D.; Sikorski, M.; Anal. Chim. Acta. 613, 207-231, 2008.
[10] Hajjar, Z.; Soltanali, S.; Tayyebi, S.; Masoumi, M.; J. Appl. Res. Chem. (JARC) 12, 71-78, 2018.
[11] Rajaei, M.; Foroughi, M.M.; Jahani, Sh.; Shahidi Zandi, M.; Hassani Nadiki, H.; J. Mol. Liq. 284, 462-480, 2019.
[12] Sheikh Mohseni, M.A.; Pirsa, S.; Anal. Bioanal. Electrochem 8, 777-789, 2016.
[13] Jafari, S.; Dehghani, M.; Ghoreshi, E.S.; Nasirizadeh, N.; J. Appl. Res. Chem. (JARC) 13, 115-127, 2019.
[14] Sheikh Mohseni, M.A.; Pirsa, S.; Electroanalysis 28, 2075-2080, 2016.
[15] Foroughi, M.M.; Jahani, Sh.; Hasani Nadiki, H.; Sens. Actuators B 285, 562-582, 2019.
[16] Sharifi, K.; Pirsa, S.; Chem. Rev. Lett. 3, 192-201, 2020.
[17] Motaharian, A.; Naseri, K.; Mehrpour, O.; J. Appl. Res. Chem. (JARC) 13, 65-76, 2019.
[18] Alizadeh, N.; Pirsa, S.; Mani-Varnosfaderani, A.; Alizadeh, M.S.; IEEE Sens. J. 15, 4130-4136, 2015.
[19] Safaei, M.; Foroughi, M.M.; Ebrahimpoor, N.; Jahani, Sh.; Omidi, A.; Khatami, M.; Trends Anal. Chem. 118, 401-450, 2019.
[20] Alizadeh, N.; Ataei, A.A.; Pirsa, S.; J. Iranian Chem. Soc. 12, 1585-1594, 2015.
[21] Ahmadi, H.; Kargosha, K.; Hemmatkhah, P.; J. Appl. Res. Chem. (JARC) 11, 43-49, 2017.
[22] Ghasemi, S.; Rezazadeh Bari, M.; Pirsa, S.; Amiri, S.; Carbohydr. Polym. 232, 115801, 2020.
[23] Arefi Nia, N.; Foroughi, M.M.; Jahani, Sh.; Shahidi Zandi, M.; Rastakhiz, N.; J. Electrochem. Soc. 166, B489-B500, 2019.
[24] Pirsa, S.; Heidari, H.; Lotfi, J.; IEEE Sens. J. 16, 2922-2928, 2016.
[25] Pirsa, S.; Mohammad Nejad, F.; Sens. Rev. 37, 155-164, 2017.
[26] Kamyabi, M.A.; Sharifi-Rad, S.; J. Appl. Res. Chem. (JARC) 10, 63-71, 2016.
[27] Ahmadi, M.T.; Ismail, R.; Anwar, S.; “Handbook of Research on Nanoelectronic Sensor Modeling and Applications”, Chap. 6, IGI Global, USA, 2017.
[28] Foroughi, M.M.; Jahani, Sh.; Rajaei, M.; J. Electrochem. Soc. 166, B1300-B1311, 2019.
[29] Pirsa, S.; Zandi, M.; Almasi, H.; Hasanlu, S.; Sens. Lett. 13, 578-583, 2015.
[30] Moosavi Keyesh, S.Z.; Mombeni Goodajdar, B.; J. Appl. Res. Chem. (JARC) 14, 19-27, 2020.
[31] Pirsa, S.; Heidari, H.; Sens. Lett. 15, 19-24, 2017.
[32] Torkzadeh-Mahani, R.; Foroughi, M.M.; Jahani, Sh.; Kazemipour, M.; Hassani Nadiki, H.; Ultrason. Sonochem. 56, 183, 2019.
[33] Koumoto, K.; Yanagida, H.; Commun. Am. Ceram. Soc. 64, C-156, 1981.
[34] Jansson, J.; Palmqvist, A.E.C.; Fridell, E.; Skoglundh, M.; Österlund, L.; Thormählen, P.; Langer, V.; J. Catal. 211, 387, 2002.
[35] Cao, A.M.; Hu, J.S.; Liang, H.P.; Song, W.G.; Wan, L.J.; He, X.L.; Gao, X.G.; Xia, S.H.; J. Phys. Chem. B 110, 15858T, 2006.
[36] Bagheri, H.; Arab, S.M.; Khoshsafar, H.; Afkhami, A.; New J. Chem. 39, 3875-3896, 2015.
[37] Esfandyari, M.; Mosayebi, A.; Abedini, R.; J. Appl. Res. Chem. (JARC) 13, 113-125, 2019.
[38] Bard; A.; Faulkner, L.; “Electrochemical methods fundamentals and applications”, 2nd ed., Wiley, New York, 2001.
_||_[1] Iranmanesh, T.; Foroughi, M.M.; Jahani, Sh.; Shahidi Zandi, M.; Hassani Nadiki, M.; Talanta 207, 120318, 2020.
[2] Yılmaz, C.; Gökmen, V.; Food Chem. 243, 420-441, 2018.
[3] Goya, R.N.; Bishnoi, S.; Chasta, H.; Abdul Aziz, M.; Oyama, M.; Talanta 85, 2626, 2011.
[4] Chen, G.Y.; Zhong, W.; Zhou, Z.; Zhang, Q.; Anal. Chim. Acta. 1037, 200-215, 2018.
[5] Fitznar, H.P.; Lobbes, J.M.; Kattner, G.; J. Chromatogr. A. 832, 123-140, 1999.
[6] Reynolds, D.M.; Water Res. 37, 3055-3069, 2003.
[7] Duan, H.; Wang, L.; Li, X.; Wang, Y.; Li, J.; Luo C.; Electrochim. Acta. A. 139, 374-391, 2015.
[8] Fang, H.; Pajski, M.L.; Ross, A.E.; Venton, B.J.; Anal. Methods 5, 2704-2428, 2013.
[9] Sikorska, E.; Gliszczynskaswiglo, A.; Insinskarak, M.; Khmelinskii, I.; Dekeukeleire, D.; Sikorski, M.; Anal. Chim. Acta. 613, 207-231, 2008.
[10] Hajjar, Z.; Soltanali, S.; Tayyebi, S.; Masoumi, M.; J. Appl. Res. Chem. (JARC) 12, 71-78, 2018.
[11] Rajaei, M.; Foroughi, M.M.; Jahani, Sh.; Shahidi Zandi, M.; Hassani Nadiki, H.; J. Mol. Liq. 284, 462-480, 2019.
[12] Sheikh Mohseni, M.A.; Pirsa, S.; Anal. Bioanal. Electrochem 8, 777-789, 2016.
[13] Jafari, S.; Dehghani, M.; Ghoreshi, E.S.; Nasirizadeh, N.; J. Appl. Res. Chem. (JARC) 13, 115-127, 2019.
[14] Sheikh Mohseni, M.A.; Pirsa, S.; Electroanalysis 28, 2075-2080, 2016.
[15] Foroughi, M.M.; Jahani, Sh.; Hasani Nadiki, H.; Sens. Actuators B 285, 562-582, 2019.
[16] Sharifi, K.; Pirsa, S.; Chem. Rev. Lett. 3, 192-201, 2020.
[17] Motaharian, A.; Naseri, K.; Mehrpour, O.; J. Appl. Res. Chem. (JARC) 13, 65-76, 2019.
[18] Alizadeh, N.; Pirsa, S.; Mani-Varnosfaderani, A.; Alizadeh, M.S.; IEEE Sens. J. 15, 4130-4136, 2015.
[19] Safaei, M.; Foroughi, M.M.; Ebrahimpoor, N.; Jahani, Sh.; Omidi, A.; Khatami, M.; Trends Anal. Chem. 118, 401-450, 2019.
[20] Alizadeh, N.; Ataei, A.A.; Pirsa, S.; J. Iranian Chem. Soc. 12, 1585-1594, 2015.
[21] Ahmadi, H.; Kargosha, K.; Hemmatkhah, P.; J. Appl. Res. Chem. (JARC) 11, 43-49, 2017.
[22] Ghasemi, S.; Rezazadeh Bari, M.; Pirsa, S.; Amiri, S.; Carbohydr. Polym. 232, 115801, 2020.
[23] Arefi Nia, N.; Foroughi, M.M.; Jahani, Sh.; Shahidi Zandi, M.; Rastakhiz, N.; J. Electrochem. Soc. 166, B489-B500, 2019.
[24] Pirsa, S.; Heidari, H.; Lotfi, J.; IEEE Sens. J. 16, 2922-2928, 2016.
[25] Pirsa, S.; Mohammad Nejad, F.; Sens. Rev. 37, 155-164, 2017.
[26] Kamyabi, M.A.; Sharifi-Rad, S.; J. Appl. Res. Chem. (JARC) 10, 63-71, 2016.
[27] Ahmadi, M.T.; Ismail, R.; Anwar, S.; “Handbook of Research on Nanoelectronic Sensor Modeling and Applications”, Chap. 6, IGI Global, USA, 2017.
[28] Foroughi, M.M.; Jahani, Sh.; Rajaei, M.; J. Electrochem. Soc. 166, B1300-B1311, 2019.
[29] Pirsa, S.; Zandi, M.; Almasi, H.; Hasanlu, S.; Sens. Lett. 13, 578-583, 2015.
[30] Moosavi Keyesh, S.Z.; Mombeni Goodajdar, B.; J. Appl. Res. Chem. (JARC) 14, 19-27, 2020.
[31] Pirsa, S.; Heidari, H.; Sens. Lett. 15, 19-24, 2017.
[32] Torkzadeh-Mahani, R.; Foroughi, M.M.; Jahani, Sh.; Kazemipour, M.; Hassani Nadiki, H.; Ultrason. Sonochem. 56, 183, 2019.
[33] Koumoto, K.; Yanagida, H.; Commun. Am. Ceram. Soc. 64, C-156, 1981.
[34] Jansson, J.; Palmqvist, A.E.C.; Fridell, E.; Skoglundh, M.; Österlund, L.; Thormählen, P.; Langer, V.; J. Catal. 211, 387, 2002.
[35] Cao, A.M.; Hu, J.S.; Liang, H.P.; Song, W.G.; Wan, L.J.; He, X.L.; Gao, X.G.; Xia, S.H.; J. Phys. Chem. B 110, 15858T, 2006.
[36] Bagheri, H.; Arab, S.M.; Khoshsafar, H.; Afkhami, A.; New J. Chem. 39, 3875-3896, 2015.
[37] Esfandyari, M.; Mosayebi, A.; Abedini, R.; J. Appl. Res. Chem. (JARC) 13, 113-125, 2019.
[38] Bard; A.; Faulkner, L.; “Electrochemical methods fundamentals and applications”, 2nd ed., Wiley, New York, 2001.