Aniline removal from polluted water with photocatalytic oxidation process by zinc oxide loaded with carbon
Subject Areas :parvaneh nakhostin panahi 1 , afsaneh nikoo 2
1 - استادیار شیمی کاربردی، گروه شیمی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران
2 - دانشجوی کارشناسی ارشد شیمی کاربردی، گروه شیمی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران
Keywords: Photocatalyst, Aniline, Zinc Oxide, Graphene,
Abstract :
Abstract: Aniline has high toxicity and is immediately absorbed through the skin. If aniline is swallowed or its vapor is inhaled, it will lead to death. Considering aniline risks on the environment and human health, it is necessary to prevent its spread into the environment. This study’s purpose is to remove aniline using a photocatalytic process under visible light irradiation. For this purpose, the zinc oxide was loaded with different values of reduced graphene oxide and graphene. The photocatalytic activity of modified zinc oxides (rGO/ZnO and G/ZnO) was investigated for aniline contaminant removal under visible light radiation. The physicochemical properties of zinc oxide and modified zinc oxides were analyzed by XRD, SEM, IR, PL, TEM and UV–vis (DRS mode) spectroscopy. The results showed that rGO/ZnO and G/ZnO composites had higher photocatalytic activity than ZnO, and the G(10%wt)/ZnO photocatalyst showed the highest photocatalytic activity and efficiency in removing aniline contaminant (75%).
[1] Jin, R.; Qiu, Z.; Cheng, W; Jin, X.; Chemical Physics Letters 755, 137747, 2020.
[2] Szczepanik, B.; Słomkiewicz, P.; Applied Clay Science 124-125, 31-38, 2016.
[3] Rachna, Rani M.; Shanker, U.; Environmental Nanotechnology, Monitoring and Management 10, 36-50, 2018.
[4] Wu, G.Q.; Zhang, X.; Hui, H.; Yan, J.; Zhang, Q.S.; Wan, J.L.; Dai, Y.; Chemical Engineering Journal 185, 201-210, 2012.
[5] Shokri, A.; International Journal of Industrial Chemistry 9, 295–303, 2018.
[6] Panahi, P.N.; Babaei, S; and Rasoulifard, M.H.; Desalination and Water Treatment 194, 194-202, 2020.
[7] Taghavi, M.; Tabatabaee, M.; Ehrampoush, M.H.; Ghaneian, M.T.; Afsharnia, M.; Alami, A.; Mardaneh, J.; Journal of Molecular Liquids 249, 546-553, 2018.
[8] Kumar, S.; Kaushik, R.D; and Purohit, L.P.; Journal of Molecular Liquids 327, 114814, 2021.
[9] Shakeel, M.; Li, B.; Arif, M.; Yasin, G.; Rehman, W.; Khan, A.U.; Khan, S.; Khan, A; and Ali, J.; Applied Catalysis B: Environmental 227, 433-445, 2018.
[10] Fan, H.; Zhao, X.; Yang, J.; Shan, X.; Yang, L.; Zhang, Y.; Li, X.; Gao, M.; Catalysis Communications 29, 29-34, 2012.
[11] Chen, Y.C.; Katsumata, K.I.; Chiu, Y.H.; Okada, K.; Matsushita, N.; Hsu, Y.J.; Applied Catalysis A: General 490, 1-9, 2015.
[12] Nakhostin Panahi, P.; Rasoulifard, M.H.; Hekmati, F.; Reaction Kinetics, Mechanisms and Catalysis 128, 539-554, 2019.
[13] Shakeel, M.; Li, B.; Arif, M.; Yasin, G.; Rehman, W.; Ullah Khan, A.; Khan, S.; Khan, A.; Ali, J.; Applied Catalysis B: Environmental 227, 433-445, 2018.
[14] Hong, R.Y.; Li, J.H.; Chen, L.L.; Liu, D.Q.; Li, H.Z.; Zheng, Y.; Ding, J.; Powder Technology 189(3), 426-432, 2009.
[15] Panahi, P.N.; Rasoulifard, M.H; and Babaei, S.; Rare Metals 39, 139-146, 2020.
[16] Dutta, K.; Poddar, D.; Das, S.; Chattopadhyay, N.; and Saha, S. K.; Journal of Environmental Chemical Engineering 9, 104851, 2021.
[17] Qiang, M.; Xiaomin, H.; Ke, L.; Rui, D.; Zhang, H.; Bo, X.; and Kewen, Z.; Separation and Purification Technology 259, 118131, 2021.
[18] Abd-Elrahim, A.G.; Chun, D.M.; Ceramics International 47, 12812-12825, 2021.
_||_[1] Jin, R.; Qiu, Z.; Cheng, W; Jin, X.; Chemical Physics Letters 755, 137747, 2020.
[2] Szczepanik, B.; Słomkiewicz, P.; Applied Clay Science 124-125, 31-38, 2016.
[3] Rachna, Rani M.; Shanker, U.; Environmental Nanotechnology, Monitoring and Management 10, 36-50, 2018.
[4] Wu, G.Q.; Zhang, X.; Hui, H.; Yan, J.; Zhang, Q.S.; Wan, J.L.; Dai, Y.; Chemical Engineering Journal 185, 201-210, 2012.
[5] Shokri, A.; International Journal of Industrial Chemistry 9, 295–303, 2018.
[6] Panahi, P.N.; Babaei, S; and Rasoulifard, M.H.; Desalination and Water Treatment 194, 194-202, 2020.
[7] Taghavi, M.; Tabatabaee, M.; Ehrampoush, M.H.; Ghaneian, M.T.; Afsharnia, M.; Alami, A.; Mardaneh, J.; Journal of Molecular Liquids 249, 546-553, 2018.
[8] Kumar, S.; Kaushik, R.D; and Purohit, L.P.; Journal of Molecular Liquids 327, 114814, 2021.
[9] Shakeel, M.; Li, B.; Arif, M.; Yasin, G.; Rehman, W.; Khan, A.U.; Khan, S.; Khan, A; and Ali, J.; Applied Catalysis B: Environmental 227, 433-445, 2018.
[10] Fan, H.; Zhao, X.; Yang, J.; Shan, X.; Yang, L.; Zhang, Y.; Li, X.; Gao, M.; Catalysis Communications 29, 29-34, 2012.
[11] Chen, Y.C.; Katsumata, K.I.; Chiu, Y.H.; Okada, K.; Matsushita, N.; Hsu, Y.J.; Applied Catalysis A: General 490, 1-9, 2015.
[12] Nakhostin Panahi, P.; Rasoulifard, M.H.; Hekmati, F.; Reaction Kinetics, Mechanisms and Catalysis 128, 539-554, 2019.
[13] Shakeel, M.; Li, B.; Arif, M.; Yasin, G.; Rehman, W.; Ullah Khan, A.; Khan, S.; Khan, A.; Ali, J.; Applied Catalysis B: Environmental 227, 433-445, 2018.
[14] Hong, R.Y.; Li, J.H.; Chen, L.L.; Liu, D.Q.; Li, H.Z.; Zheng, Y.; Ding, J.; Powder Technology 189(3), 426-432, 2009.
[15] Panahi, P.N.; Rasoulifard, M.H; and Babaei, S.; Rare Metals 39, 139-146, 2020.
[16] Dutta, K.; Poddar, D.; Das, S.; Chattopadhyay, N.; and Saha, S. K.; Journal of Environmental Chemical Engineering 9, 104851, 2021.
[17] Qiang, M.; Xiaomin, H.; Ke, L.; Rui, D.; Zhang, H.; Bo, X.; and Kewen, Z.; Separation and Purification Technology 259, 118131, 2021.
[18] Abd-Elrahim, A.G.; Chun, D.M.; Ceramics International 47, 12812-12825, 2021.