Nanostructures prepared from natural ilmenite mineral for rapid degradation of furazolidone in heterogeneous Fenton process
Subject Areas :Hamideh Haghighat 1 , Mehrangiz Fathinia 2 , Siavash Fathinia 3
1 - Assistant Professor of Department of Chemistry, Farhangian University, Tehran, Iran.
2 - Assistant Professor of Department of Chemistry, Farhangian University, Tehran, Iran.
3 - PhD Student of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran.
Keywords: Heterogeneous Fenton process, Ilmenite natural mineral, Furazolidone, Exfoliation process, Ultrasound wave,
Abstract :
In this study, for the first time, ilmenen-hematon nanostructures were prepared from natural ilmenite mineral by the exfoliation process in the presence of ultrasound wave for rapid degradation of furazolidone contaminant. The aim of the present study was to increase the reduction efficiency of iron (II) in the heterogeneous Fenton process by preparing ilmenn-Hematon nanostructures from its natural mineral. The effect of organic solvents such as dimethylformamide, N-methyl-2-pyrrolidine, isopropyl, and toluene to produce relevant nanostructures during the exfoliation process in the presence of ultrasound waves and as well as the effect of the obtained nanocatalyst in the heterogeneous Fenton process to degrade the pharmaceutical pollutant furazolidone, were investigated. The obtained results showed that the exfoliation process in the liquid phase by ultrasound wave in the presence of dimethylformamide solvent was successful and the band gap is reduced from 3.57 eV in the natural mineral ilmenite to 2.2 eV in the prepared nanocatalyst from it. The ability to absorb light and the degradation efficiency of furazolidone drug under visible light increased and after 60 minutes reached to a maximum of 95.5%. Optimal values of effective parameters for furazolidone degradation were modeled by experimental design using the response surface method (RSM) and Design-Expert7 software. The physical and chemical characteristics of the prepared nanocatalyst were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), dot mapping, Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence spectroscopy (XRF), Brunauer–Emmett–Teller (BET), and Diffuse reflection spectroscopy (DRS) methods and the reproducibility of the prepared nanocatalyst was investigated during 6 cycles of the process. Also, the characteristics of the catalyst used in the reproducibility cycle were studied using XRD and FTIR techniques.
[1] Neyens, E.; Baeyens, J.; Journal of Hazardous Materials 98, 33-50, 2003.
[2] Gotvajn, A.Z.; Konean, Z.J.; Research Chemistry 40, 463-474, 2005.
[3] Carriazo, J.; Guelou, E.; Barrault, J.; Tatibouet, J.M.; Molina, R.; Moreno, S.; Catalysis Today 107, 126-132, 2005.
[4] Soon, A.N.; Hameed, B.H.; Desalination 269, 1-16, 2011.
[5] Liu, C.J.; Vissokov, G.P.; Jang, B.W.L.; Catalysis Today 72 173-184, 2002.
[6] Sun, J.H.; Shi, S.H.; Lee, Y.F.; Sun, S.P.; Chemical Engineering Journal 155, 680-683, 2009.
[7] Ghanbari, H.; Shafikhani, M.A.; Daryalaal, M.; Ceram. Int. 45, 20051-20057, 2019.
[8] Masoumi, Z.; Tayebi, M.; Lee, B.K.; Ultrasonics sonochemistry 72, 105403, 2021.
[9] Nicolosi, V.; Chhowalla, M.; Kanatzidis, M.G.; Strano, M.S.; Coleman, J.N.; Science 340, 1226419-18, 2013.
[10] Tyurnina, A.V.; Tzanakis, I.; Morton, J.; Mi, J.; Porfyrakis, K.; Maciejewska, B.M.; Grobert, N.; Eskin, D. G.; Carbon 168, 737- 747, 2020.
[11] Zhou, Z.; Li, L.; Liu, X.; Lei, H.; Wang, W.; Yang, Y.; Wang, J.; Cao, Y.; Journal of Molecular Liquids 324, 115116, 2021.
[12] Munonde, T.S.; Zheng, H.; Nomngongo, P.N.; Ultrason. Sonochem. 59, 104716, 2019.
[13] Hu, X.Z.; Xu, Y.; Yediler, A.; Journal of Agricultural and Food Chemistry 55, 1144-1149, 2007.
[14] Ali, B.H.; General Pharmacology: The Vascular System 20, 557-563, 1989.
[15] Babulal, S.M.; Chen, T.W.; Chen, S.M.; Al-Onazi, W.A.; Al-Mohaimeed, A.M.; Catalysts 11, 1397, 2021.
[16] Timperio, A.M.; Kuiper, H.A.; Zolla, L.; Xenobiotica 33, 153-167, 2003.
[17] Aronson, J.K.; "Furazolidone, in Meyler's Side Effects of Drugs", Sixteenth Edition, Elsevier, Oxford, 465, 2016.
[18] Zolfaghari, R.; Rezai, B.; Bahri, Z.; Mahmoudian, M.; Journal of Sustainable Metallurgy 6, 643-658, 2020.
[19] Parapari, P.S.; Irannajad, M.; Mehdilo, A.; Minerals Engineering 92, 160- 167, 2016.
[20] García-Muñoz, P.; Pliegoa, G.; Zazoa, J.A.; Bahamonde, A.; Casas, J.A.; Journal of Environmental Chemical Engineering 4, 542-548, 2016.
[21] Gao, B.; Yang, C.; Chen, J.; Ma, Y.; Xie, J.; Zhang, H.; Wei, L.; Li, Q.; Du, J.; Xu, Q; RSC Advances 7, 54594-54602, 2017.
[22] Thistlethwaite, P.J.; Hook, M.S.; Langmuir 16, 4993-4998,2000.
[23] Peck, A.S.; Raby, L.H.; Wadsworth, M.E.; AIME 235, 301-307, 1966.
[24] Prakash, S., Das, B.; Mohanty, J.K.; Venugopal, R.; International Journal of Mineral Processing 57, 87-103, 1999.
[25] Wang, Y.H.; Yu, F.S.; Journal of China University of Mining and Technology 17, 35-39, 2007.
[26] Zhu, Y.-G.; Zhang, G.-F.; Feng, Q.-M.; Yan, D.-C.; Wang, W.-Q.; Transactions of Nonferrous Metals Society of China 21, 1149-1154. 2011.
[27] Ghamami, Sh.; Kazemi, A.; Bagheri, N.; Journal of Applied Chemistry 55, 189-206, 2019.
[28] Yao, Z.-M.; Li, Z.-H.; Zhang, Y.; J. Colloid Interface Sci. 266, 382-389, 2003.
[29] Chen, Y.H.; Synthesis 357, 136-139, 2011.
[30] Kasiri, M.B.; Aleboyeh, H.; Aleboyeh, A.; Applied Catalysis B: Environmental 84, 9-15, 2008.
[31] Tekbaş, M.; Yatmaz, H.C.; Bektaş, N.; Microporous and Mesoporous Materials 115, 594-602, 2008.
[32] Chen, A.; Ma, X.; Sun, H.; Journal of Hazardous Materials 156, 568-575, 2008.
[33] Lam, F.L.Y.; Hu, X.; Catalysis Communications 8, 2125-2129, 2007.
[34] Neamţu, M.; Zaharia, C.; Catrinescu, C.; Yediler, A.; Macoveanu, M.; Kettrup, A.; Applied Catalysis B: Environmental 48, 287-294, 2004.
[35] Liu, Ch.-J.; Zou, J.; Yu, K.; Cheng, D.; Han, Y.; Zhan, J.; Ratanatawanate Ch.; Jang B.W.-L.; Pure and Applied Chemistry 78, 1227-1238, 2006.
[36] Liu, Y.; Wang, X.; Sun, Q.; Yuan, M.; Sun, Zh.; Xia, S.; Zhao, J.; Journal of Hazardous Materials 424, 127387, 2022.
[37] Gu, X.; Zhao, Y.; Sun, K.; Vieira, C.L.Z.; Jia, Z.; Cui, C.; Wang, Z.; Walsh, A.; Huang, S.; Sonochem 58, 104630, 2019.
_||_[1] Neyens, E.; Baeyens, J.; Journal of Hazardous Materials 98, 33-50, 2003.
[2] Gotvajn, A.Z.; Konean, Z.J.; Research Chemistry 40, 463-474, 2005.
[3] Carriazo, J.; Guelou, E.; Barrault, J.; Tatibouet, J.M.; Molina, R.; Moreno, S.; Catalysis Today 107, 126-132, 2005.
[4] Soon, A.N.; Hameed, B.H.; Desalination 269, 1-16, 2011.
[5] Liu, C.J.; Vissokov, G.P.; Jang, B.W.L.; Catalysis Today 72 173-184, 2002.
[6] Sun, J.H.; Shi, S.H.; Lee, Y.F.; Sun, S.P.; Chemical Engineering Journal 155, 680-683, 2009.
[7] Ghanbari, H.; Shafikhani, M.A.; Daryalaal, M.; Ceram. Int. 45, 20051-20057, 2019.
[8] Masoumi, Z.; Tayebi, M.; Lee, B.K.; Ultrasonics sonochemistry 72, 105403, 2021.
[9] Nicolosi, V.; Chhowalla, M.; Kanatzidis, M.G.; Strano, M.S.; Coleman, J.N.; Science 340, 1226419-18, 2013.
[10] Tyurnina, A.V.; Tzanakis, I.; Morton, J.; Mi, J.; Porfyrakis, K.; Maciejewska, B.M.; Grobert, N.; Eskin, D. G.; Carbon 168, 737- 747, 2020.
[11] Zhou, Z.; Li, L.; Liu, X.; Lei, H.; Wang, W.; Yang, Y.; Wang, J.; Cao, Y.; Journal of Molecular Liquids 324, 115116, 2021.
[12] Munonde, T.S.; Zheng, H.; Nomngongo, P.N.; Ultrason. Sonochem. 59, 104716, 2019.
[13] Hu, X.Z.; Xu, Y.; Yediler, A.; Journal of Agricultural and Food Chemistry 55, 1144-1149, 2007.
[14] Ali, B.H.; General Pharmacology: The Vascular System 20, 557-563, 1989.
[15] Babulal, S.M.; Chen, T.W.; Chen, S.M.; Al-Onazi, W.A.; Al-Mohaimeed, A.M.; Catalysts 11, 1397, 2021.
[16] Timperio, A.M.; Kuiper, H.A.; Zolla, L.; Xenobiotica 33, 153-167, 2003.
[17] Aronson, J.K.; "Furazolidone, in Meyler's Side Effects of Drugs", Sixteenth Edition, Elsevier, Oxford, 465, 2016.
[18] Zolfaghari, R.; Rezai, B.; Bahri, Z.; Mahmoudian, M.; Journal of Sustainable Metallurgy 6, 643-658, 2020.
[19] Parapari, P.S.; Irannajad, M.; Mehdilo, A.; Minerals Engineering 92, 160- 167, 2016.
[20] García-Muñoz, P.; Pliegoa, G.; Zazoa, J.A.; Bahamonde, A.; Casas, J.A.; Journal of Environmental Chemical Engineering 4, 542-548, 2016.
[21] Gao, B.; Yang, C.; Chen, J.; Ma, Y.; Xie, J.; Zhang, H.; Wei, L.; Li, Q.; Du, J.; Xu, Q; RSC Advances 7, 54594-54602, 2017.
[22] Thistlethwaite, P.J.; Hook, M.S.; Langmuir 16, 4993-4998,2000.
[23] Peck, A.S.; Raby, L.H.; Wadsworth, M.E.; AIME 235, 301-307, 1966.
[24] Prakash, S., Das, B.; Mohanty, J.K.; Venugopal, R.; International Journal of Mineral Processing 57, 87-103, 1999.
[25] Wang, Y.H.; Yu, F.S.; Journal of China University of Mining and Technology 17, 35-39, 2007.
[26] Zhu, Y.-G.; Zhang, G.-F.; Feng, Q.-M.; Yan, D.-C.; Wang, W.-Q.; Transactions of Nonferrous Metals Society of China 21, 1149-1154. 2011.
[27] Ghamami, Sh.; Kazemi, A.; Bagheri, N.; Journal of Applied Chemistry 55, 189-206, 2019.
[28] Yao, Z.-M.; Li, Z.-H.; Zhang, Y.; J. Colloid Interface Sci. 266, 382-389, 2003.
[29] Chen, Y.H.; Synthesis 357, 136-139, 2011.
[30] Kasiri, M.B.; Aleboyeh, H.; Aleboyeh, A.; Applied Catalysis B: Environmental 84, 9-15, 2008.
[31] Tekbaş, M.; Yatmaz, H.C.; Bektaş, N.; Microporous and Mesoporous Materials 115, 594-602, 2008.
[32] Chen, A.; Ma, X.; Sun, H.; Journal of Hazardous Materials 156, 568-575, 2008.
[33] Lam, F.L.Y.; Hu, X.; Catalysis Communications 8, 2125-2129, 2007.
[34] Neamţu, M.; Zaharia, C.; Catrinescu, C.; Yediler, A.; Macoveanu, M.; Kettrup, A.; Applied Catalysis B: Environmental 48, 287-294, 2004.
[35] Liu, Ch.-J.; Zou, J.; Yu, K.; Cheng, D.; Han, Y.; Zhan, J.; Ratanatawanate Ch.; Jang B.W.-L.; Pure and Applied Chemistry 78, 1227-1238, 2006.
[36] Liu, Y.; Wang, X.; Sun, Q.; Yuan, M.; Sun, Zh.; Xia, S.; Zhao, J.; Journal of Hazardous Materials 424, 127387, 2022.
[37] Gu, X.; Zhao, Y.; Sun, K.; Vieira, C.L.Z.; Jia, Z.; Cui, C.; Wang, Z.; Walsh, A.; Huang, S.; Sonochem 58, 104630, 2019.