A study on the structural and textural properties of medium-silica ZSM-5 templated by ethanol
Subject Areas :Mohadese Nazari 1 , Fereydoon Yaripour 2
1 - Catalysis Research Group, Esfarayen University of Technology, Esfarayen, North Khorasan, Iran
2 - Petrochemical Research & Technology Company
Keywords: ethanol, Crystallinity, Specific surface area, ZSM-5 zeolite, large scale,
Abstract :
Templates play a key role in the crystallization of zeolites. Quaternary ammonium compounds, the most common templates used in the synthesis of ZSM-5 zeolite, can cause problems in large-scale production due to their high cost, toxicity, and corrosive effects. The present study aimed to synthesize the medium-silica ZSM-5 templated by ethanol in a 5-liter stirred autoclave (450 rpm) with cheap and available alumina and silica sources. The effects of synthesis and operating parameters on the structural and textural characteristics of the zeolite were investigated using XRD, FTIR, FE-SEM EDX, XRF, BET, and TGA analyses. The results showed that the small size of ethanol and its weak bonding with Si-OH terminal groups of silicate anions increased the crystallization time and the sensitivity of the structure to synthesis parameters. However, proper adjustment of these parameters allowed the synthesis of a pure ZSM-5 with high crystallinity and surface area. It was found that high OH-/SiO2 ratios decrease the aspect ratio Lc/La by increasing nucleation rate and decreasing crystal growth. Moreover, increasing the Si/Al value accelerated the kinetic growth of the crystal in the b axis and led to the appearance of twinned coffin-shaped crystals. Finally, a pure silica-medium ZSM-5 (SiO2/Al2O3 = 50) with a yield above 90%, relative crystallinity of 100%, and surface area of 443 m2.g-1 was obtained at OH-/SiO2 =0.15 within 40 h.
[1] Costa, E.; Uguina, M.; De Lucas, A.; Blanes, J.; J. Catal. 107, 317-324, 1987.
[2] Ma, T.; Zhang, L.; Song, Y.; Shang, Y.; Zhai, Y.; Gong, Y.; Catalysis Science & Technology 8, 1923-1935, 2018.
[3] Uguina, M.A.; de Lucas, A.; Ruiz, F.; Serrano, D.P.; Industrial & engineering chemistry research 34, 451-456, 1995.
[4] Zhang, D.; Wang, R.; Yang, X.; Microporous Mesoporous Mater. 126, 8-13, 2009.
[5] Falamaki, C.; Edrissi, M.; Sohrabi, M.; Zeolites 19, 2-5, 1997.
[6] Feng, F.; Balkus, K.J.; J. Porous Mater. 10, 235-242, 2003.
[7] Plank, C.J.; Rosinski, E.J.; Rubin, M.K.; US Patent, 4341748, 1982.
[8] Van der Gaag, F.; Jansen, J.; Van Bekkum, H.; Applied catalysis 17, 261-271, 1985.
[9] Fu, D.; Schmidt, J.E.; Pletcher, P.; Karakiliç, P.; Ye, X.; Vis, C.M.; Bruijnincx, P.C.; Filez, M.; Mandemaker, L.D.; Winnubst, L.; Angew. Chem. Int. Ed. 57, 12458-12462, 2018.
[10] Sang, S.; Chang, F.; Liu, Z.; He, C.; He, Y.; Xu, L.; Catal. Today. 93, 729-734, 2004.
[11] Uguina, M.; Sotelo, J.; Serrano, D.; Applied catalysis 76, 183-198, 1991.
[12] Song, W.; Justice, R.; Jones, C.; Grassian, V.; Larsen, S.; Langmuir 20, 8301-8306, 2004.
[13] Albiero, J.K.; Schwaab, M.; Castilhos, F.D.; Coutinho, E.B.; Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental 19, 1325-1333, 2015.
[14] Calsavara, V.; Baesso, M.L.; Fernandes-Machado, N.R.C.; Fuel. 87, 1628-1636, 2008.
[15] Liu, X.; Sun, Y.; Catalysts 10, 198-211, 2020.
[16] Al-Jubouri, S.M.; Microporous Mesoporous Mater. 303, 110296-110305, 2020.
[17] Beyraghi, S.; Rostamizadeh, M.; Alizadeh, R.; Polyolefins Journal 8, 93-103, 2021.
[18] Sun, H.; Peng, P.; Wang, Y.; Li, C.; Subhan, F.; Bai, P.; Xing, W.; Zhang, Z.; Liu, Z.; Yan, Z.; J. Porous Mater. 24, 1513-1525, 2017.
[19] Baerlocher, C.; Bennett, J.M.; Depmeier, W.; Fitch, A.N.; Jobic, H.; van Koningsveld, H.; Meier, W.M.; Pfenninger, A.; Terasaki, O.; "Structures and Structure Determination, Chap. 6,", Springer, Switzerland, 1999.
[20] Bebon, C.; Colson, D.; Marrot, B.t.; Klein, J.P.; Di Renzo, F.; Microporous Mesoporous Mater. 53, 13-20, 2002.
[21] Marrot, B.; Bebon, C.; Colson, D.; Klein, J.; Crystal Research and Technology 36, 269-281, 2001.
[22] Derouane, E.G.; Determmerie, S.; Gabelica, Z.; Blom, N.; Applied catalysis 1, 201-224, 1981.
[23] Guth, J.; Caullet, P.; Wey, R.; Studies in Surface Science and Catalysis 24, 183-190, 1985.
[24] Moolenaar, R.J.; Evans, J.C.; McKeever, L.; The Journal of Physical Chemistry 74, 3629-3636, 1970.
[25] Shukla, D.B.; Pandya, V.P.; Journal of Chemical Technology & Biotechnology 44, 147-154, 1989.
[26] Fujita, S.; Kanai, T.; Oumi, Y.; Sano, T.; Studies in Surface Science and Catalysis 158, 191-198, 2005.
[27] Chatterjee, A.; Vetrivel, R.; J. Chem. Soc., Faraday Trans. 91, 4313-4319, 1995.
[28] Hargreaves, J.; Crystallography Reviews 11, 21-34, 2005.
[29] Alvarez, A.; Viturro, H.; Bonetto, R.; Mater. Chem. Phys. 32, 135-140, 1992.
[30] Mentzen, B.; Lefebvre, F.; Mater. Res. Bull. 32, 813-820, 1997.
[31] Dai, F.-Y.; Suzuki, M.; Takahashi, H.; Saito, Y.; Bull. Chem. Soc. Jpn. 61, 3403-3407, 1988.
[32] Schmidt, F.; Hoffmann, C.; Giordanino, F.; Bordiga, S.; Simon, P.; Carrillo-Cabrera, W.; Kaskel, S.; J. Catal. 307, 238-245, 2013.
[33] Parise, J.; Hriljac, J.; Cox, D.; Corbin, D.; Ramamurthy, V.; J. Chem. Soc., Chem. Commun. 3, 226-228, 1993.
[34] Wu, E.; Lawton, S.; Olson, D.; Rohrman, A.; Kokotailo, G.; J. Phys. Chem. 83, 2777-2781, 1979.
[35] Ali, B.; Lan, X.; Arslan, M.T.; Gilani, S.Z.A.; Wang, H.; Wang, T.; Journal of Industrial and Engineering Chemistry 88, 127-136, 2020.
[36] Bonilla, G.; Díaz, I.; Tsapatsis, M.; Jeong, H.-K.; Lee, Y.; Vlachos, D.G.; Chem. Mater. 16, 5697-5705, 2004.
[37] Zhou, M.; Rownaghi, A.A.; Hedlund, J.; RSC advances. 3, 15596-15599, 2013.
[38] Shirazi, L.; Jamshidi, E.; Ghasemi, M.; Crystal Research and Technology 43, 1300-1306, 2008.
[39] Wang, K.; Dong, M.; Niu, X.; Li, J.; Qin, Z.; Fan, W.; Wang, J.; Crystal Growth & Design 18, 7548-7561, 2018.
[40] Loewenstein, W.; American Mineralogist: Journal of Earth and Planetary Materials 39, 92-96, 1954.
[41] Li, T.; Krumeich, F.; Van Bokhoven, J.A.; Crystal Growth & Design 19, 2548-2551, 2019.
[42] Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.; Pure Appl. Chem. 87, 1051-1069, 2015.
[43] Gharamaleki, J.A.; Farzaneh, F.; Ghandi, M.; Journal of Sciences Islamic Republic of Iran. 15, 39-46, 2004.
_||_[1] Costa, E.; Uguina, M.; De Lucas, A.; Blanes, J.; J. Catal. 107, 317-324, 1987.
[2] Ma, T.; Zhang, L.; Song, Y.; Shang, Y.; Zhai, Y.; Gong, Y.; Catalysis Science & Technology 8, 1923-1935, 2018.
[3] Uguina, M.A.; de Lucas, A.; Ruiz, F.; Serrano, D.P.; Industrial & engineering chemistry research 34, 451-456, 1995.
[4] Zhang, D.; Wang, R.; Yang, X.; Microporous Mesoporous Mater. 126, 8-13, 2009.
[5] Falamaki, C.; Edrissi, M.; Sohrabi, M.; Zeolites 19, 2-5, 1997.
[6] Feng, F.; Balkus, K.J.; J. Porous Mater. 10, 235-242, 2003.
[7] Plank, C.J.; Rosinski, E.J.; Rubin, M.K.; US Patent, 4341748, 1982.
[8] Van der Gaag, F.; Jansen, J.; Van Bekkum, H.; Applied catalysis 17, 261-271, 1985.
[9] Fu, D.; Schmidt, J.E.; Pletcher, P.; Karakiliç, P.; Ye, X.; Vis, C.M.; Bruijnincx, P.C.; Filez, M.; Mandemaker, L.D.; Winnubst, L.; Angew. Chem. Int. Ed. 57, 12458-12462, 2018.
[10] Sang, S.; Chang, F.; Liu, Z.; He, C.; He, Y.; Xu, L.; Catal. Today. 93, 729-734, 2004.
[11] Uguina, M.; Sotelo, J.; Serrano, D.; Applied catalysis 76, 183-198, 1991.
[12] Song, W.; Justice, R.; Jones, C.; Grassian, V.; Larsen, S.; Langmuir 20, 8301-8306, 2004.
[13] Albiero, J.K.; Schwaab, M.; Castilhos, F.D.; Coutinho, E.B.; Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental 19, 1325-1333, 2015.
[14] Calsavara, V.; Baesso, M.L.; Fernandes-Machado, N.R.C.; Fuel. 87, 1628-1636, 2008.
[15] Liu, X.; Sun, Y.; Catalysts 10, 198-211, 2020.
[16] Al-Jubouri, S.M.; Microporous Mesoporous Mater. 303, 110296-110305, 2020.
[17] Beyraghi, S.; Rostamizadeh, M.; Alizadeh, R.; Polyolefins Journal 8, 93-103, 2021.
[18] Sun, H.; Peng, P.; Wang, Y.; Li, C.; Subhan, F.; Bai, P.; Xing, W.; Zhang, Z.; Liu, Z.; Yan, Z.; J. Porous Mater. 24, 1513-1525, 2017.
[19] Baerlocher, C.; Bennett, J.M.; Depmeier, W.; Fitch, A.N.; Jobic, H.; van Koningsveld, H.; Meier, W.M.; Pfenninger, A.; Terasaki, O.; "Structures and Structure Determination, Chap. 6,", Springer, Switzerland, 1999.
[20] Bebon, C.; Colson, D.; Marrot, B.t.; Klein, J.P.; Di Renzo, F.; Microporous Mesoporous Mater. 53, 13-20, 2002.
[21] Marrot, B.; Bebon, C.; Colson, D.; Klein, J.; Crystal Research and Technology 36, 269-281, 2001.
[22] Derouane, E.G.; Determmerie, S.; Gabelica, Z.; Blom, N.; Applied catalysis 1, 201-224, 1981.
[23] Guth, J.; Caullet, P.; Wey, R.; Studies in Surface Science and Catalysis 24, 183-190, 1985.
[24] Moolenaar, R.J.; Evans, J.C.; McKeever, L.; The Journal of Physical Chemistry 74, 3629-3636, 1970.
[25] Shukla, D.B.; Pandya, V.P.; Journal of Chemical Technology & Biotechnology 44, 147-154, 1989.
[26] Fujita, S.; Kanai, T.; Oumi, Y.; Sano, T.; Studies in Surface Science and Catalysis 158, 191-198, 2005.
[27] Chatterjee, A.; Vetrivel, R.; J. Chem. Soc., Faraday Trans. 91, 4313-4319, 1995.
[28] Hargreaves, J.; Crystallography Reviews 11, 21-34, 2005.
[29] Alvarez, A.; Viturro, H.; Bonetto, R.; Mater. Chem. Phys. 32, 135-140, 1992.
[30] Mentzen, B.; Lefebvre, F.; Mater. Res. Bull. 32, 813-820, 1997.
[31] Dai, F.-Y.; Suzuki, M.; Takahashi, H.; Saito, Y.; Bull. Chem. Soc. Jpn. 61, 3403-3407, 1988.
[32] Schmidt, F.; Hoffmann, C.; Giordanino, F.; Bordiga, S.; Simon, P.; Carrillo-Cabrera, W.; Kaskel, S.; J. Catal. 307, 238-245, 2013.
[33] Parise, J.; Hriljac, J.; Cox, D.; Corbin, D.; Ramamurthy, V.; J. Chem. Soc., Chem. Commun. 3, 226-228, 1993.
[34] Wu, E.; Lawton, S.; Olson, D.; Rohrman, A.; Kokotailo, G.; J. Phys. Chem. 83, 2777-2781, 1979.
[35] Ali, B.; Lan, X.; Arslan, M.T.; Gilani, S.Z.A.; Wang, H.; Wang, T.; Journal of Industrial and Engineering Chemistry 88, 127-136, 2020.
[36] Bonilla, G.; Díaz, I.; Tsapatsis, M.; Jeong, H.-K.; Lee, Y.; Vlachos, D.G.; Chem. Mater. 16, 5697-5705, 2004.
[37] Zhou, M.; Rownaghi, A.A.; Hedlund, J.; RSC advances. 3, 15596-15599, 2013.
[38] Shirazi, L.; Jamshidi, E.; Ghasemi, M.; Crystal Research and Technology 43, 1300-1306, 2008.
[39] Wang, K.; Dong, M.; Niu, X.; Li, J.; Qin, Z.; Fan, W.; Wang, J.; Crystal Growth & Design 18, 7548-7561, 2018.
[40] Loewenstein, W.; American Mineralogist: Journal of Earth and Planetary Materials 39, 92-96, 1954.
[41] Li, T.; Krumeich, F.; Van Bokhoven, J.A.; Crystal Growth & Design 19, 2548-2551, 2019.
[42] Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.; Pure Appl. Chem. 87, 1051-1069, 2015.
[43] Gharamaleki, J.A.; Farzaneh, F.; Ghandi, M.; Journal of Sciences Islamic Republic of Iran. 15, 39-46, 2004.