Determination of losartan using carbon paste electrode modified metal-organic framework MIL-101 by differential pulse voltammetry
Subject Areas :Mahzad Firouzi 1 , Masoud Giahi 2 , Mostafa Najafi 3 , Seyed Saied Homami 4 , Seyed Husain Hashemi Mousavi 5
1 - Department of Chemistry, South Tehran Branch, Islamic Azad University, Tehran, Iran
2 - Department of Chemistry, South Tehran Branch, Islamic Azad University, Tehran, Iran
3 - Department of Chemistry, Faculty of Science, Imam Hossein University, Tehran, Iran
4 - Department of Chemistry, South Tehran Branch, Islamic Azad University, Tehran, Iran
5 - Department of Chemistry, South Tehran Branch, Islamic Azad University, Tehran, Iran
Keywords: Metal-organic framework, Modified electrode, Losartan, MIL-101, Square wave voltammetry,
Abstract :
In this research, at first, the metal organic framework (MIL-101) was synthesized characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). A highly sensitive electrochemical sensor was fabricated based on MIL-101 (a metal-organic framework) modified carbon paste electrode and used for determination of losartan. The electrochemical behavior of losartan was studied with cyclic voltammetry and chronoamperometry techniques. The modified electrode exhibited excellent electrocatalytic activity towards the oxidation losartan in phosphate buffer (pH=8). Determination of losartan by differential pulse voltammetry method showed that there are two linear relationships between losartan concentration and anodic peak current in the range of 1 to 10 and 10 to 200 μM with a detection limit of 0.7 µM. The effect of possible interferences on the voltammetric response of losartan was investigated. Finally, the modified electrode was used for determination of losartan in pharmaceutical and biological samples. The results showed the high ability for analysis of this drug in real samples.
[1] Inagami, T.; Iwai, N.; Sasaki, K.; Yamamo, Y.; Bardhan, S.; Chaki, S.; Guo D.; Furuta, H.; J. Hypertens. 10, 713-716, 1992.
[2] Triggl, D. J; Clin. Ther. 17, 1005-1030, 1995.
[3] Wadie, M.A.; Kishk, S.M.; Darwish, K.M.; Mostafa, S.M.; Elgawish, M.S.; Brooks, M.A.; Chromatographia 83, 1477-1494, 2020.
[4] Zhang, M.; Wei, F.; Zhang, Y.F.; Nie, J.; Feng , Y.Q.; J. Chromatogr. A. 1102, 294-301, 2006.
[5] Bakr, N.A.; Saad, S.; Elshabrawy, Y.; Eid, M.; Luminescence 35, 561-571, 2020.
[6] Rossini, P.O.; Felix, F S.; Angnes, L.; Cent. Eur. J. Chem. 10, 1842-1849, 2012.
[7] Hertzog, D.L.; McCafferty, J.F.; Fang, X.; Tyrrell, R.J.; Reed, R A.; J. Pharm. Biomed. 30, 747-760, 2002.
[8] Sharifi, K.; Pirsa, S.; Chemical Review and Letters 3, 192-201, 2020.
[9] Alizadeh, N.; Pirsa, S.; Mani-Varnosfaderani, A.; Alizadeh, M.S.; IEEE Sens. J. 15, 4130-4136, 2015.
[10] Sheikh-Mohseni, M.A.; Pirsa, S.; Electroanalysis. 28, 2075-2080, 2016.
[11] Pirsa, S.; Nejad, F.M.; Sens. Rev. 37, 155-164, 2017.
[12] Mohammadi, N.; Najafi, M.; Bahrami Adeh, N.; Sens. Actuators. B Chem. 243, 838-846, 2017.
[13] Pirsa, S.; Heidari, H.; Lotfi, J.; IEEE Sens. J. 16, 2922-2928, 2016.
[14] Pirsa, S.; Zandi, M.; Almasi, H.; Hasanlu, S.; Sens. Lett. 13, 578-583, 2015.
[15] Hoskins, B.F.; Robson, R.; J. Am. Chem. Soc. 112, 1546-1554, 1990.
[16] Li, J. R.; Kuppler, R. J.; Zhou, H. C.; Chem, Soc. Rev. 38, 1477-1504, 2009.
[17] Lu, G.; Hupp, J.T.; J. Am. Chem. Soc. 132, 7832-7833, 2010.
[18] Min, K.S.; Suh, M.P.; J. Am. Chem. Soc. 122, 6834-6840, 2000.
[19] Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K A.; Nguyen, S.T.; Hupp, J T.; Chem. Soc. Rev. 38, 1450-1459, 2009.
[20] Diaz, R.; Gisela Orcajo, M.; Botas, J. A.; Calleja, G; Palma, J.; Mater. Lett. 68, 126-128, 2012.
[21] Zhanga, W.; Zhang, Z.; Li, Y.; Chenb, J.; Li, X.; Zhanga, Y.; Zhang, Y.; Sens. Actuators. B 247, 756-764, 2017.
[22] Gu, J.; Yin, X.; Bo, X.; Guo, L.; ChemElectroChem 5, 2893-2901, 2018.
[23] Hatamluyi, B.; Hashemzadeh, A.; Darroudi, M.; Sens. Actuators B 307, 127614, 2019.
[24] Naghian, E.; Shahdost-fard, F.; Sohouli, E.; Safarifard, V.; Najafi, M.; Rahimi-Nasrabadi, M.; Sobhani-Nasab, A.; Microchem. J. 156, 104888, 2020.
[25] Santos, M.C.G.; Tarley, C.R.T.; Dall'Antonia, L.H.; Sartori, E.R.; Sens. Actuators B Chem. 188, 263-270, 2013.
[26] Ensafi, A.A.; Hajian, R.; Anal. Sci. 24, 1449-1454, 2008.
[27] Habib, I.H.I; Weshahy, S.A.; Toubar, S.; El-Alamin, M.M.A.; Port. Electrochim. Acta. 26, 315-324, 2008.
[28] Yuzhi, L.; Chao, H.; Haijun, D.; Wenbin, L.; Yingwei, L.; Jianshan, Y.; J. Electroanal. Chem. 709, 65-69, 2013.
[29] Jianxia, G.; Xiangdang, Y.; Xiangjie, B.; Liping, G.; ChemElectroChem 5, 2893-2901, 2018.
_||_[1] Inagami, T.; Iwai, N.; Sasaki, K.; Yamamo, Y.; Bardhan, S.; Chaki, S.; Guo D.; Furuta, H.; J. Hypertens. 10, 713-716, 1992.
[2] Triggl, D. J; Clin. Ther. 17, 1005-1030, 1995.
[3] Wadie, M.A.; Kishk, S.M.; Darwish, K.M.; Mostafa, S.M.; Elgawish, M.S.; Brooks, M.A.; Chromatographia 83, 1477-1494, 2020.
[4] Zhang, M.; Wei, F.; Zhang, Y.F.; Nie, J.; Feng , Y.Q.; J. Chromatogr. A. 1102, 294-301, 2006.
[5] Bakr, N.A.; Saad, S.; Elshabrawy, Y.; Eid, M.; Luminescence 35, 561-571, 2020.
[6] Rossini, P.O.; Felix, F S.; Angnes, L.; Cent. Eur. J. Chem. 10, 1842-1849, 2012.
[7] Hertzog, D.L.; McCafferty, J.F.; Fang, X.; Tyrrell, R.J.; Reed, R A.; J. Pharm. Biomed. 30, 747-760, 2002.
[8] Sharifi, K.; Pirsa, S.; Chemical Review and Letters 3, 192-201, 2020.
[9] Alizadeh, N.; Pirsa, S.; Mani-Varnosfaderani, A.; Alizadeh, M.S.; IEEE Sens. J. 15, 4130-4136, 2015.
[10] Sheikh-Mohseni, M.A.; Pirsa, S.; Electroanalysis. 28, 2075-2080, 2016.
[11] Pirsa, S.; Nejad, F.M.; Sens. Rev. 37, 155-164, 2017.
[12] Mohammadi, N.; Najafi, M.; Bahrami Adeh, N.; Sens. Actuators. B Chem. 243, 838-846, 2017.
[13] Pirsa, S.; Heidari, H.; Lotfi, J.; IEEE Sens. J. 16, 2922-2928, 2016.
[14] Pirsa, S.; Zandi, M.; Almasi, H.; Hasanlu, S.; Sens. Lett. 13, 578-583, 2015.
[15] Hoskins, B.F.; Robson, R.; J. Am. Chem. Soc. 112, 1546-1554, 1990.
[16] Li, J. R.; Kuppler, R. J.; Zhou, H. C.; Chem, Soc. Rev. 38, 1477-1504, 2009.
[17] Lu, G.; Hupp, J.T.; J. Am. Chem. Soc. 132, 7832-7833, 2010.
[18] Min, K.S.; Suh, M.P.; J. Am. Chem. Soc. 122, 6834-6840, 2000.
[19] Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K A.; Nguyen, S.T.; Hupp, J T.; Chem. Soc. Rev. 38, 1450-1459, 2009.
[20] Diaz, R.; Gisela Orcajo, M.; Botas, J. A.; Calleja, G; Palma, J.; Mater. Lett. 68, 126-128, 2012.
[21] Zhanga, W.; Zhang, Z.; Li, Y.; Chenb, J.; Li, X.; Zhanga, Y.; Zhang, Y.; Sens. Actuators. B 247, 756-764, 2017.
[22] Gu, J.; Yin, X.; Bo, X.; Guo, L.; ChemElectroChem 5, 2893-2901, 2018.
[23] Hatamluyi, B.; Hashemzadeh, A.; Darroudi, M.; Sens. Actuators B 307, 127614, 2019.
[24] Naghian, E.; Shahdost-fard, F.; Sohouli, E.; Safarifard, V.; Najafi, M.; Rahimi-Nasrabadi, M.; Sobhani-Nasab, A.; Microchem. J. 156, 104888, 2020.
[25] Santos, M.C.G.; Tarley, C.R.T.; Dall'Antonia, L.H.; Sartori, E.R.; Sens. Actuators B Chem. 188, 263-270, 2013.
[26] Ensafi, A.A.; Hajian, R.; Anal. Sci. 24, 1449-1454, 2008.
[27] Habib, I.H.I; Weshahy, S.A.; Toubar, S.; El-Alamin, M.M.A.; Port. Electrochim. Acta. 26, 315-324, 2008.
[28] Yuzhi, L.; Chao, H.; Haijun, D.; Wenbin, L.; Yingwei, L.; Jianshan, Y.; J. Electroanal. Chem. 709, 65-69, 2013.
[29] Jianxia, G.; Xiangdang, Y.; Xiangjie, B.; Liping, G.; ChemElectroChem 5, 2893-2901, 2018.