Synthesis of cobalt ferrite nanoparticles and investigation of magnetic hyperthermia properties at different concentrations
Subject Areas :Salah Khanahmadzadeh 1 , kamran heydaryan 2
1 - Department of Chemistry, Mahabad Branch, Islamic AzadUniversity, PO Box 443, Mahabad, Iran
2 - Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317, Iran
Keywords: nanoparticles, Cobalt ferrite, Co-precipitation method, Superparamagnet, Specific loss power,
Abstract :
In this paper, cobalt ferrite nanoparticles were synthesized using a co-precipitation method. The properties and characteristics of the cobalt ferrite nanoparticles were studied using XRD, VSM, and FESEM analyses. The FESEM images showed that the cobalt ferrite nanoparticles had almost spherical morphology, and that the particle size distribution (determined with the help of Digimizer software) was in the range of 25–60 nm. Moreover, the average size of the nanoparticles was calculated to be in the range of 37-47 nm. The VSM results indicated superparamagnetic properties of the cobalt ferrite nanoparticles at room temperature. Besides, the saturation magnetization and coercivity were found to be 30 emu/g and 39 Oe, respectively. The specific loss power (SLP) was investigated by preparing ferrofluid concentrations of 3, 5, and 8 mg/ml under a magnetic field of 400 Oe and at a frequency of 400 kHz. In this case, the rate of the increase in temperature of the cobalt ferrite nanoparticles was measured in a certain period of time, and the related SLP was calculated. The results of the measurements showed that the highest rate of the heat generation occured at the concentration of 8 mg/ml, leading to an SLP value of 162 W/g.
[1] Zu, S.-Z.;Han, B.-H.; The Journal of Physical Chemistry C 113, 13651-13657, 2009.
[2] Heydaryan, K.; Kashi, M.A.; Sharifi, N.; Ranjbar-Azad, M.; New Journal of Chemistry 44, 9037-9045, 2020.
[3] Xu, W.; He, W.; Du, Z.; Zhu, L.; Huang, K.; Lu, Y.;Luo, Y.; Angewandte Chemie International Edition 60, 6890-6918, 2021.
[4] Cui, Z.-M.; Jiang, L.-Y.; Song, W.-G.;Guo, Y.-G.; Chemistry of Materials 21, 1162-1166, 2009.
[5] Hirt, A.M.; Sotiriou, G.A.; Kidambi, P.R.;Teleki, A.; Journal of Applied Physics 115, 044314, 2014.
[6] Geraldes, C.F.;Laurent, S.; Contrast Media & Molecular Imaging 4, 1-23, 2009.
[7] Pilati, V.; Cabreira Gomes, R.; Gomide, G.; Coppola, P.; Silva, F.G.; Paula, F.b.L.; Perzynski, R.; Goya, G.F.; Aquino, R.; Depeyrot, J.R.M.; The Journal of Physical Chemistry C 122, 3028-3038, 2018.
[8] Cao, M.; Li, Z.; Wang, J.; Ge, W.; Yue, T.; Li, R.; Colvin, V.L.;William, W.Y.; Trends in Food Science & Technology 27, 47-56, 2012.
[9] Faraji, M.; Fadavi, G.; Iranian Journal of Nutrition Sciences & Food Technology 8, 239-252, 2013.
[10] Robles, J.; Das, R.; Glassell, M.; Phan, M.-H.; Srikanth, H.; AIP Advances 8, 056719, 2018.
[11] Sun, C.; Lee, J.S.;Zhang, M.; Advanced drug delivery reviews 60, 1252-1265, 2008.
[12] Ji, R.; Cao, C.; Chen, Z.; Zhai, H.;Bai, J.; Journal of Materials Chemistry C 2, 5944-5953, 2014.
[13] Baldi, G.; Bonacchi, D.; Franchini, M.C.; Gentili, D.; Lorenzi, G.; Ricci, A.; Ravagli, C.; Langmuir 23, 4026-4028, 2007.
[14] Salokhe, A.; Koli, A.; Jadhav, V.; Mane-Gavade, S.; Supale, A.; Dhabbe, R.; Yu, X.-Y.;Sabale, S.; SN Applied Sciences 2, 1-11, 2020.
[15] Hu, L.; de Montferrand, C.; Lalatonne, Y.; Motte, L.; Brioude, A.; The Journal of Physical Chemistry C 116, 4349-4355, 2012.
[16] Khizar, S.; Ahmad, N.M.; Ahmed, N.; Manzoor, S.; Hamayun, M.A.; Naseer, N.; Tenório, M.K.; Lebaz, N.; Elaissari, A.; Nanomaterials 10, 2182, 2020.
[17] Jalalian, M.; Mirkazemi, S.; Alamolhoda, S.; Journal of Magnetism and Magnetic Materials 419, 363-367, 2016.
[18] Tomitaka, A.; Takemura, Y.; J Pers Nanomedicine 1, 33-37, 2015.
[19] Ortega, D.; Pankhurst, Q.A.; Nanoscience 1, 60-88, 2013.
[20] Abenojar, E.C.; Wickramasinghe, S.; Bas-Concepcion, J.; Samia, A.C.S.; Progress in Natural Science: Materials International 26, 440-448, 2016.
[21] Myrovali, E.; Maniotis, N.; Makridis, A.; Terzopoulou, A.; Ntomprougkidis, V.; Simeonidis, K.; Sakellari, D.; Kalogirou, O.; Samaras, T.; Salikhov, R.; Scientific reports 6, 1-11, 2016.
_||_[1] Zu, S.-Z.;Han, B.-H.; The Journal of Physical Chemistry C 113, 13651-13657, 2009.
[2] Heydaryan, K.; Kashi, M.A.; Sharifi, N.; Ranjbar-Azad, M.; New Journal of Chemistry 44, 9037-9045, 2020.
[3] Xu, W.; He, W.; Du, Z.; Zhu, L.; Huang, K.; Lu, Y.;Luo, Y.; Angewandte Chemie International Edition 60, 6890-6918, 2021.
[4] Cui, Z.-M.; Jiang, L.-Y.; Song, W.-G.;Guo, Y.-G.; Chemistry of Materials 21, 1162-1166, 2009.
[5] Hirt, A.M.; Sotiriou, G.A.; Kidambi, P.R.;Teleki, A.; Journal of Applied Physics 115, 044314, 2014.
[6] Geraldes, C.F.;Laurent, S.; Contrast Media & Molecular Imaging 4, 1-23, 2009.
[7] Pilati, V.; Cabreira Gomes, R.; Gomide, G.; Coppola, P.; Silva, F.G.; Paula, F.b.L.; Perzynski, R.; Goya, G.F.; Aquino, R.; Depeyrot, J.R.M.; The Journal of Physical Chemistry C 122, 3028-3038, 2018.
[8] Cao, M.; Li, Z.; Wang, J.; Ge, W.; Yue, T.; Li, R.; Colvin, V.L.;William, W.Y.; Trends in Food Science & Technology 27, 47-56, 2012.
[9] Faraji, M.; Fadavi, G.; Iranian Journal of Nutrition Sciences & Food Technology 8, 239-252, 2013.
[10] Robles, J.; Das, R.; Glassell, M.; Phan, M.-H.; Srikanth, H.; AIP Advances 8, 056719, 2018.
[11] Sun, C.; Lee, J.S.;Zhang, M.; Advanced drug delivery reviews 60, 1252-1265, 2008.
[12] Ji, R.; Cao, C.; Chen, Z.; Zhai, H.;Bai, J.; Journal of Materials Chemistry C 2, 5944-5953, 2014.
[13] Baldi, G.; Bonacchi, D.; Franchini, M.C.; Gentili, D.; Lorenzi, G.; Ricci, A.; Ravagli, C.; Langmuir 23, 4026-4028, 2007.
[14] Salokhe, A.; Koli, A.; Jadhav, V.; Mane-Gavade, S.; Supale, A.; Dhabbe, R.; Yu, X.-Y.;Sabale, S.; SN Applied Sciences 2, 1-11, 2020.
[15] Hu, L.; de Montferrand, C.; Lalatonne, Y.; Motte, L.; Brioude, A.; The Journal of Physical Chemistry C 116, 4349-4355, 2012.
[16] Khizar, S.; Ahmad, N.M.; Ahmed, N.; Manzoor, S.; Hamayun, M.A.; Naseer, N.; Tenório, M.K.; Lebaz, N.; Elaissari, A.; Nanomaterials 10, 2182, 2020.
[17] Jalalian, M.; Mirkazemi, S.; Alamolhoda, S.; Journal of Magnetism and Magnetic Materials 419, 363-367, 2016.
[18] Tomitaka, A.; Takemura, Y.; J Pers Nanomedicine 1, 33-37, 2015.
[19] Ortega, D.; Pankhurst, Q.A.; Nanoscience 1, 60-88, 2013.
[20] Abenojar, E.C.; Wickramasinghe, S.; Bas-Concepcion, J.; Samia, A.C.S.; Progress in Natural Science: Materials International 26, 440-448, 2016.
[21] Myrovali, E.; Maniotis, N.; Makridis, A.; Terzopoulou, A.; Ntomprougkidis, V.; Simeonidis, K.; Sakellari, D.; Kalogirou, O.; Samaras, T.; Salikhov, R.; Scientific reports 6, 1-11, 2016.