The survey of synorganization of floral parts and pollinium and pollen germination and tube growth in Calotropis procera (Asclepiadoideae)
Subject Areas : Developmental biology of plants and animals , development and differentiation in microorganismsFatemeh Alimoradi 1 , فرخنده رضانژاد 2
1 - Biology Department. Payamnoor University of kahnooj, Kerman, Iran
2 - هیئت علمی دانشگاه شهید باهنر کرمان
Keywords: Corona, Anther, Anther tube, Istabraq, Gynostegium,
Abstract :
Calotropis procera (subfamily Asclepiadoideae) is one of important medicinal plants in desert and natural resources that has wide distribution in dry and hot areas of southern of Kerman province, Iran. Synorganization of flower is extreme in Asclepiadoideae among angiosperms. Synorganization of flower parts and pollen germination and tube growth were studied. The species contains pentamerous, actinomorphic and bisexual flowers with thick, hairy and white-pink calyx. Corolla is saucer shaped and white-violet that are fused in floral bud and its top part reopened at anthesis. Stamens are attached together through stamen tube and pollinia. Anthers are attached to the stigma to form gynostegium and filaments form a tube around the gynoecium. Stamen tube contains guide rail and corona for pollinator attraction and movement. Each anther contains two thecae, each one has one pollinium (pollen sac) in which pollen grains are united as compact in collective envelope. Two pollinia, one each from two neighboring anthers are connected together by a translator (consists of a clip and two arms.) and form pollinarium apparatus. Thus, pollen grains are not dispersed singly; pollinia are always transported together. The translator does not consist of cellular structure. The postgenital fusion occurs between the anthers and pentagonal stigma and in the upper zone between the two carpels. Synorganisation of flower parts is mostly postgenital. In vitro pollen germination and tube growth was high on basal medium at 300C. One or both pollinia from pollinarium apparatus record pollen germination and tube growth. Pollinia growth showed the unilateral organization.
[1] ضعیفی، م. (1378). فلور ایران، جلد 28، تیره استبرق (Asclepiadaceae)، مؤسسه تحقیقات جنگلها و مراتع. تهران.
[2] قرآن کریم، سورههای کهف (آیهی 31 )، دخان (آیهی 53)، الرحمن (آیهی 54)، انسان (آیهی 21).
[3] قهرمان، ا. (1373). کورموفیتهای ایران. جلد 3، مرکز نشر دانشگاهی، تهران.
[4] Bhatnagar S. 1975. Floral polymorphism in sympatric populations of Calotropis procera (Ait.) R.Br. Acta Botanica Indica 3: 43–46.
[5] Bin Z., Tang D., Zhou R. 2016. Study on pollen germination and pollen tube growth of Calotropis gigantea, Chinese Journal of Tropical Agriculture, 5: 32-37.
[6] Ebadi, A., Rezaei, M., Fatahi, R., 2010. Mechanism of seedlessness in Iranian seedless barberry (Berberis vulgaris L. var. asperma). Sci. Hortic. 125, 486–493.
[7] El-Bakry, A.A., Hammad, I.A. & Rafat, F.A. 2014. Polymorphism in Calotropis procera: preliminary genetic variation in plants from different phytogeographical regions of Egypt.Rend. Fis. Acc. Lincei, 25: 471- 477.
[8] Endress, P.K. 1994. Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge, UK.
[9] Endress M.E. 2004. Apocynaceae: Brown and now. Telopea 10: 525–541.
[10] Endress P.K. 2006. Angiosperm floral evolution: morphological developmental ramework. Advances in Botanical Research 44: 1–61.
[11] Endress ME, Liede-Schumann S, Meve U. 2014. An updated classification for Apocynaceae. Phytotaxa 159: 175–194. Endress ME. 2004. Apocynaceae: Brown and now. Telopea 10: 525–541.
[12] Endress, P.K. 2016. Development and evolution of extreme synorganization in angiosperm flowers and diversity: a comparison of Apocynaceae and Orchidaceae. Ann. Bot. 117: 749–767.
[13] Harder L.D., Johnson S.D. 2008. Function and evolution of aggregated pollen in angiosperms. International Journal of Plant Sciences 169: 59–78.
[14] Jayaprakash P., Sarla N. 2001. Development of an improved medium for germination of Cajanus cajan (L.) Millsp. pollen in vitro. Journal Experimental of Botany, 52, 851-855.
[15] Malik CP and Singh MB. 1977. Dehydrogenases and isocitrate lyase activity during pollen germination in Calotropis procera, 86 (6): 371–374.
[16] Pandey, P. K., Verma, Y., Choubey, S., Pendey, M. and Chandrasekhar, K. 2008. Biosorptive removal of cadmium from contaminated groundwater and industrial effluents. Bioresource Technology 99. 4420-4427.
[17] Parsons, W. T. and Cuthbertson E. G. 2001. Noxious weeds of Australia (2 ed.). CSIRO Publishing. Ausrtalia.
[18] Qureshi, A. A., Prakash, T., Patil, T ., Swamy, A. H. M., Gouda, A. V., Prabhu, K. and Setty, S. R. 2007. Hepatoprotective and antioxidant activities of flowers of Calotropis procera (Ait) R. Br. in CCL4 induced hepatic damage. Indian Journal of Experimental Biology 45: 304-310.
[19] Shukla SN, Tewari MN. 1973b. Interaction of growth regulators in pollen tube elongation of Calotropis procera. Ind J Exp Biol 11:591–592.
[20] Sobrinho, M. S., Tabatinga, G. M., Machado, I. C., and Lopes, A. V. 2013. Reproductive phenological pattern of Calotropis procera (Apocynaceae), an invasive species in Brazil: annual in native areas; continuous in invaded areas of caatinga. Acta Botanica Brasílica 27, 456–459.
[21] Tahir, A. 1994. pollination ecology of some asclepiads (Asclepaidaceae) from Pakistan. PhD Thesis, University of Karachi, Karachi, Pakistan.
[22] Tao, L. P., Gilbert, M. G. and Stevens, W. D. 1995. Asclepiadaceae. Flora of China 16: 189–27.
_||_