اثر محلولپاشی اسید آسکوربیک بر ویژگیهای اکوفیزیولوژیکی پریوش (Catharanthus roseus) تحت تنش کمبود آب
Subject Areas : Journal of Ornamental Plants
1 - گروه کشاورزی، واحد آستارا، دانشگاه آزاد اسلامی، آستارا، ایران
Keywords: تنش خشکی, کاتالاز, وزن خشک, اسید آسکوربیک, گیاهان زینتی و دارویی,
Abstract :
آب یکی از مهمترین عوامل محیطی تنظیم کننده رشد و نمو گیاهان است و کمبود آب مهمترین عامل محدودکننده تولیدات گیاهی بهشمار میرود، به طوری که از چندین ماده شیمیایی برای کاهش اثرات مضر کمبود آب استفاده شده است. یکی از این ترکیبات اسید آسکوربیک است و دارای اثرات آنتی اکسیدانی در گیاهان میباشد. به همین منظور یک آزمایش گلدانی به صورت فاکتوریل در قالب طرح پایه کاملاَ تصادفی با سه تکرار جهت بررسی اثر کمبود آب بر خصوصیات مورفولوژیک و فیزیولوژیک پریوش تحت محلولپاشی اسید آسکوربیک، در سال 1399 انجام شد. فاکتورهای آزمایش شامل: تنش کمبود آب در چهار سطح (1: بدون تنش آبیاری در100 درصد ظرفیت مزرعه؛ 2: تنش ملایم آبیاری در 75 درصد ظرفیت مزرعه؛ 3: تنش متوسط آبیاری در 50 درصد ظرفیت مزرعه و 4: تنش شدید آبیاری در 25 درصد ظرفیت مزرعه) و محلولپاشی اسید آسکوربیک در چهار سطح (صفر، ۲۵، ۵۰، 100 میلیمولار) بودند. نتایج بهدست آمده نشان داد که غلظت کلروفیل a و کاروتنوئید، قند محلول برگ، مقدار پرولین و فعالیت آنزیم کاتالاز با افزایش شدت کمبود آب افزایش یافت ولی صفات وزن خشک ریشه و بیومس کل کاهش یافتند. کاربرد اسید آسکوربیک منجر به بهبود صفات اندازهگیری شد و سطوح کاربرد اسید آسکوربیک نسبت به عدم کاربرد آن برتری معنیدار داشت و سطح 50 میلیمولار نسبت به سایر سطوح، تاثیر بیشتری، در اغلب صفات، داشت. با توجه به نتایج بدست آمده، کاربرد اسید آسکوربیک برای بهبود رشد گیاهانی مانند پریوش تحت تنش خشکی قابل توصیه میباشد.
Akram, N. A., Ashraf, M., Ashraf, M. and Sadiq, M. 2020. Exogenous application of L-methionine mitigates the drought-induced oddities in biochemical and anatomical responses of bitter gourd (Momordica charantia L.). Scientia Horticulturae, 267: 109333. https://doi.org/10.1016/j.scienta.2020.109333
Alhaithloul, H. A., Soliman, M. H., Ameta, K. L., El-Esawi, M. A. and Elkelish, A. 2019. Changes in ecophysiology, osmolytes, and secondary metabolites of the medicinal plants of Mentha piperita and Catharanthus roseus subjected to drought and heat stress. Biomolecules, 10 (1): 43. https://doi.org/10.3390/biom10010043
Ali, E. F., El-Shehawi, A. M., Ibrahim, O. H. M., Abdul-Hafeez, E. Y., Moussa, M. M. and Hassan, F. A. S. 2021. A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiology and Biochemistry, 161: 166-175.
Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24 (1): 1-15.
Arrigoni, O. 2014. Ascorbate system in plant development. Journal of Bioenergy and Biomembran, 26: 407-419.
Aruna, M. S., Prabha, M. S., Priya, N. S. and Nadendla, R. 2015. Catharanthus roseus: Ornamental plant is now medicinal boutique. Journal of Drug Delivery and Therapeutics, 5 (3): 1-4.
Arzhang, M., Dakhili, M. and Farahani, F. 2015. Investigation of chemical compounds and antimicrobial activity of essential oil result of Melissa officinalis L. Journal of Qom University of Medical Sciences, 9 (1-2): 7-13. (in Persian)
Bates, I.S., Waldern, R.P. and Tear, I.D. 1973. Rapid determination of free praline for water stress studies. Plant and Soil, 39: 205-207.
Carrasco-Luna, J., Calatayud, A., Gonzalez-Daros, F. and de Valle-Tascon, S. 1995. Hexacyanoferrate (III) stimulation of elongation in coleoptiles segments from Zea mays L. Protoplasma, 184: 63-71.
Chance, C. and Maehly, A.C. 1955. Assay of catalase and peroxidase. Methods in Enzymology, 2: 764-775.
Dhyani, P., Quispe, C., Sharma, E., Bahukhandi, A., Sati, P., Attri, D.C. and Cho, W.C. 2022. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell International, 22 (1): 1-20.
El-Beltagi, H.S., Ahmad, I., Basit, A., Shehata, W. F., Hassan, U., Shah, S. T. and Mohamed, H. I. 2022. Ascorbic acid enhances growth and yield of sweet peppers (Capsicum annum) by mitigating salinity stress. Gesunde Pflanzen, 74 (2): 423-433.
El-Khamissi, H.A., El-Hamamsy, S.M.A. and Behairy, R.T. 2018. Mitigation of drought stress on fenugreek seedlings by application of ascorbic acid. Journal of Biological Chemistry, 13, 343-358.
Elstner, E.F. 1991. Mechanism of oxygen activation in different compartments of plant cell. In: Pell, E.J., Steffen, K.L. (ed.): Active Oxygen/Oxidative Stress and Plant Metabolism. Plant Physiology, Rockville. pp. 13-25.
Foyer, C.H. and Hanke, G. 2022. ROS production and signaling in chloroplasts: Cornerstones and evolving concepts. The Plant Journal, 111 (3): 642-661.
Goldschmidt, E.E. and Huber, S.C. 1992. Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiology, 99 (4): 1443-1448.
Hasanuzzaman, M., Nahar, K., Gill, S. S. and Fujita, M. 2013. Drought stress responses in plants, oxidative stress, and antioxidant defense. Climate Change and Plant Abiotic Stress Tolerance, 14: 209-250.
Hashemabadi, D., Asadi Beigzadeh-Mahaleh, Z. and Pourzarnegar, F. 2019. Morphological and physiological traits of Catharanthus roseus L. at different irrigation intervals as affected by salicylic acid application. Journal of Ornamental Plants, 9 (3): 165-178.
Hemmati, K., Ebadi, A., Khomari, S. and Sedghi, M. 2018. Influence of ascorbic acid and 24-epibrassinolide on physiological characteristics of pot marigold under water-stress condition. Journal of Plant Interactions, 13 (1): 364-372.
Huber, S.C., Rogers, H.H. and Mowry, F.L. 1984. Effects of water stress on photosynthesis and carbon partitioning in soybean (Glycine max [L.] Merr.) plants grown in the field at different CO2 levels. Plant Physiology, 76: 244–249.
Joshi, N. and Bains, K. 2021. Quantification of ascorbic acid, bioactive compounds and antioxidant activity in some unconventional leafy greens. Plants, (3): 209-216.
Kaur, P., Dey, A., Kumar, V., Dwivedi, P., Banik, R. M., Singh, R. and Pandey, D. K. 2021. Recent advances and future prospects of indole alkaloids producing endophytes from Catharanthus roseus. Volatiles and Metabolites of Microbes, 1: 449-472.
Kaushik, S.H.U.C.H.I., Tomar, R.S., Gupta, M.O.N.I.K.A. and Mishra, R.K. 2017. An overview of Catharanthus roseus and medicinal properties of their metabolites against important diseases. European Academic Research, 5 (2): 1237-1247.
Keller, F. and Ludlow, M.M. 1993. Carbohydrate metabolism in drought-stressed leaves of pigeonpea (Cajanus cajan), Journal of Experimental Botany, 44(8): 1351–1359.
Latif, M., Akram, N.A. and Ashraf, M. 2016. Regulation of some biochemical attributes in drought-stressed cauliflower (Brassica oleracea L.) by seed pre-treatment with ascorbic acid. The Journal of Horticultural Science and Biotechnology, 91 (2): 129-137.
Malik, S. and Ashraf, M. 2012. Exogenous application of ascorbic acid stimulates growth and photosynthesis of wheat (Triticum aestivum L.) under drought. Soil and Environment, 31 (1): 72-77.
Miller, G., Suzuki, N. and Ciftci‐Yilmaz, S. 2010 Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell and Environment, 33: 453-467.
Muhie, S.H. 2022. Optimization of photosynthesis for sustainable crop production. CABI Agriculture and Bioscience, 3 (1): 1-8.
Noctor, G. and Foyer, C.H. 1998. Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Biology, 49 (1): 249-279.
Rajaeian, S., Ehsanpour, A.A. and Toghyani, M.A. 2015. Changes in phenolic compound, TAL, PAL activity of Nicotiana rustica triggered by ethanolamine pretreatment under in vitro salt stress condition. Iranian Journal of Plant Biology, 7 (2): 1-12
Rayle, D.L. and Clelend, R.E. 1992. The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiology, 99: 1271-1274.
Rizvi, N.F., Weaver, J.D., Cram, E.J. and Lee-Parsons, C.W. 2016. Silencing the transcriptional repressor, ZCT1, illustrates the tight regulation of terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy roots. PLoS One, 11 (7): e0159712.
Saudy, H., El-Bially, M., El-Metwally, I. and Shahin, M. 2021. Physio-biochemical and agronomic response of ascorbic acid treated sunflower (Helianthus annuus) grown at different sowing dates and under various irrigation regimes. Gesunde Pflanzen, 73 (2): 169-179.
Seminario, A., Song, L., Zulet, A., Nguyen, H.T., González, E.M. and Larrainzar, E. 2017. Drought stress causes a reduction in the biosynthesis of ascorbic acid in soybean plants. Frontiers in Plant Science, 8: 1042. https://doi.org/10.3389%2Ffpls.2017.01042
Sharma, P., Dubey, R. and Pessarakli, M. 2012 Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 14: 1-26.
Smirnoff, N. 2013. Plant resistance to environmental stress. Current Opinion in Biotechnology, 9 (2): 214-219.
Srivastava, N.K. and Srivastava, A.K. 2007. Influence of gibberellic acid on 14CO2 metabolism, growth, and production of alkaloids in Catharanthus roseus. Photosynthetica, 45: 156–160.
Vahdati, M., Aghdasi, M. and sadeghipour, H.R. 2010. Interaction of trehalose and ascorbic acid in growing Arabidopsis seedlings. Journal of Plant Production, 17: 27-48.
Verbruggen, N. and Hermans, C. 2008. Proline accumulation in plants: A review. Amino acids, 35(4): 753-759.
Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z. and Chen, S. 2021. Response mechanism of plants to drought stress. Horticulturae, 7 (3): 50. https://doi.org/10.3390/horticulturae7030050
Yang, L., Wen, K.S., Ruan, X., Zhao, Y.X., Wei, F. and Wang, Q. 2018. Response of plant secondary metabolites to environmental factors. Molecules, 23: 762. https://doi.org/10.3390/molecules23040762
Yemm, E.W. and Willis, A. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57 (3): 508–514.
Zhu, J.K. 2018. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology, 124: 941-948.