مقایسه آماره های تجزیه پایداری در تشخیص ژنوتیپ های پایدار و عملکرد بالای اسانس گل محمدی (Rosa damascena Mill.)
Subject Areas : Journal of Ornamental Plantsبایزید یوسفی 1 , سید رضا طبایی عقدایی 2
1 - دانشیار پژوهش، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کردستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، سنندج، ایران
2 - استاد پژوهش، موسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران
Keywords: سازگاری, اسانس, آماره پایداری, گل محمدی (<i>Rosa damascena</i> Mill.),
Abstract :
پایداری تولید اسانس گل در ژنوتیپهای گل محمدی بهعنوان یکی از مهمترین گیاهان دارویی و معطر ایران، هنوز کاملا بررسی و مستند نشده است. بهمنظور مقایسه آمارههای تشخیص پایداری عملکرد اسانس، شش آماره متفاوت برای 35 ژنوتیپ گل محمدی (Rosa damascena) کشور، کاشت شده بهصورت طرح بلوکهای کامل تصادفی با سه تکرار در هفت استان (کردستان، مرکزی، اصفهان، خوزستان، فارس، کرمان و خراسان) و دو سال (2007 و 2008) ارزیابی شد. اختلاف معنیداری (01/0P<) از لحاظ بازده اسانس بین ژنوتیپها (G)، مکانها (L)، محیطها (E) و نیز برای اثرات متقابل ژنوتیپ × مکان (GL) و ژنوتیپ× محیط (GE) مشاهده شد. همبستگی مثبت بین واریانس محیطی (S2)، ضریب تغییرات (CV) و ضریب رگرسیون عملکرد بر محیط (b) با بازده اسانس دلالت داشت که فقط ژنوتیپهای با اسانس پایین فنوتیپ مشابهی را در محیطهای مختلف دارند که این همان پایداری استاتیکاست. ژنوتیپ پایداری با مفهوم استاتیک رگرسیون(b ≈ 0) وجود نداشت و ژنوتیپهای پایدار (Stable) با S2 هم اسانس بسیار اندکی داشتند، اما برخی ژنوتیپهای سازگار با CV (مانند KM1) همزمان عملکرد بالا و پایداری عملکرد داشتند. ژنوتیپهای پایدار با مفهوم دینامیک (b ≈ 1 و 0≈Sd2 واریانس انحرافات از خط رگرسیون برابر صفر) عملکرد اسانس متوسطی داشتند. شاخص برتری(P) ژنوتیپهای با بالاترین اسانس را بهعنوان سازگار معرفی نمود. ژنوتیپهای پایدار با کمترین واریانس سال در مکان (MSY/P)، حداقل اسانس را تولید کردند. میتوان نتیجه گرفت که ژنوتیپ گل محمدی میتواند همزمان دارای پایداری استاتیک، دینامیک و عملکرد اسانس بالا باشد. در مجموع آماره ضریب تغییرات (CV)، جنبه دینامیک آمارههای رگرسیون (b ≈ 1, Sd2≈ 0) و شاخص برتری (P) بهعنوان پارامترهای مطلوب برای ارزیابی جنبه های مختلف (استاتیک و دینامیک) پایداری اسانس در گلمحمدی پیشنهاد میشوند.
Babaei, A., Tabaei-Aghdaei, S.R., Khosh-khui, M., Omidbaigi, R., Naghavi, M.R., Esselink, G.D. and Smulders, M.J.M. 2007. Microsatellite analysis of damask rose (Rosa damascena Mill.) accessions from various regions in Iran reveals multiple genotypes. BMC-Plant Biology, 7 (12): 1-6.
Bajpai, P.K. and Prabhakaran, V.T. 2000. A new procedure of simultaneous selection for high yielding and stable crop genotypes. Indian Journal Genetics, 60: 141-146.
Basford, K.E. and Cooper, M. 1998. Genotype - environment interactions and some considerations of their implications for wheat breeding in Australia. Australian Journal of Agricultural Research, 49: 154-174.
Basim, E. and Basim, H. 2003. Antibacterial activity of Rosa damascena essential oil. Fitoterapia, 74: 394-396.
Baydar, H. and Baydar, N.G. 2004. The effects of harvest date, fermentation duration and Tween 20 treatment on essential oil content and composition of industrial oil rose (Rosa damascena Mill.). Industrial Crops and Products, 21: 251–255.
Becker, H.C. and Leon, J. 1988. Stability analysis in plant breeding. Plant Breeding, 101: 1-23.
Bernardo, R. 2002. Quantitative traits in plants. Stemma Press, Woodbury, MN.
Eberhart, S.A. and Russell, W.A. 1966. Stability parameters for comparing varieties. Crop Science, 6: 36-40.
Falkenhagen, E.R. 1996. A comparison of the AMMI method with some classical statistical methods in provenance research: A case of the South African Pinus radiata trials. Forest Genetics, 3 (2): 81- 87.
Finlay, K.W. and Wilkinson, G.N. 1963. The analysis of adaptation in plant breeding programme. Australian Journal of Agricultural Research, 14: 742-754.
Francis,T.R. and Kannenberg, L.W. 1973. Yield stability studies in short-season maize. Canadian Journal of Plant Science, 58: 1028-1034.
Freeman, G.H. 1973. Statistical methods for the analysis of genotype-environment interactions. Heredity, 31 (3): 339 - 354.
Heinrich, G.M., Francis, C.A. and Eastin, J.D. 1983. Stability of grain sorghum yield components across diverse environments. Crop Science, 23: 209-212.
Kang, M.S. 1988. A rank-sum method for selecting high-yielding stable corn genotypes. Cereal Research Communications, 16: 113-115.
Kang, M.S. 1993. Simultaneous selection for yield and stability in crop performance trials: Consequences for grower. Agronomy Journal, 85: 754-757.
Kanzler, A. 2002. Genotype × environment interaction in Pinus patula and its implications in South Africa. Faculty of North Carolina State University, Department of Forestry, Raleigh, NC, 249 p.
Kempton, R.A. and Fox, P.N. 1997. Statistical methods for plant variety evaluation, London, Chapman & Hall. p: 139-161.
Lin, C.S. and Binns, M.R. 1988. A superiority measure of landrace performance for landrace x location data. Canadian Journal of Plant Sciences, 68: 193-198.
Lin, C.S., Burns, M.R. and Lefkovitch, L.P. 1986. Stability analysis: Where do we stand? Crop Science, 26: 894-900.
Mahmood, N.S., Piacente, C., Pizza, A., Bueke, A., Khan, I. and Hay, A.J. 1996. The anti- HIV activity and mechanisms of action of pure compounds isolated from Rosa damascena. Biochemistry and Biophysics Research Communication, 229: 73-79.
Omokhafe, K.O. 2004. Interaction between flowering pattern and latex yield in Hevea brasiliensis Muell. Crop Breeding and Applied Biotechnology, 4: 280-284.
Ozkan, G., Sagdic, O., Baydar, N.G. and Baydar, H. 2004. Antioxidant and anti-bacterial activities of Rosa damascena flower extracts. Food Science and Technology, 10: 277-281.
Pirseyedi, S.M., Mardi, M., Davazdahemami, S., Kermani, M. and Mohammadi, S.A. 2005. Analysis of the genetic diversity 12 Iranian damask rose (Rosa damascena Mill.) genotypes using amplified fragment length polymorphism markers. Iranian Journal of Biotechnology, 3 (4): 225-230. (In Persian)
Probir, K.P. 2013. Evaluation, genetic diversity, recent development of distillation method, challenges and opportunities of Rosa damascena: A review. Journal of Essential Oil Bearing Plants, 16 (1): 1-10.
Ramagosa, I. and Fox, P.N. 1993. Genotype x environment interaction and adaptation. In: Hayward, M.D., Bosemark, N.O. and Ramagosa, I. (eds). Plant breeding: Principles and prospects. Chapman and Hall, London, pp. 373-390.
Rusanov, K., Kovacheva, N., Stefanova, K., Atanassov, A. and Atanassov, I. 2009. Rosa damascena genetic resources and capacity building for molecular breeding. Biotechnology, 23 (4): 1436-1439.
Singh, R.K. and Chaudhary, B.D. 1977. Biometrical methods in quantitative genetic analysis. Kalyani Publishers, New Delhi, 288p.
Tabaei-Aghdaei, S.R., Babaei, A., Khosh-Khui, M., Jaimand, K., Rezaee, M.B., Assareh, M. H. and Naghavi, M.R. 2007. Morphological and oil content variations amongst damask rose (Rosa damascena Mill.) landraces from different regions of Iran. Scientia Horticulturae, 113 (1): 44-48.
Tabaei-Aghdaei, S.R., Hosseini Monfared, H., Fahimi, H., Ebrahimzadeh, H., Jebelly, M., Naghavi, M.R. and Babaei, A. 2006. Genetic variation analysis of different population of Rosa damascena Mill. in NW. Iran using RAPD markers. Iranian Journal of Botany, 12 (2): 121-127.
Tabaei-Aghdaei, S.R., Rezaei, M.B. and Jebeli, M. 2004. Flower yield and morphological characteristics in some genotypes of Rosa damascena. Iranian Journal of Medicinal and Aromatic Plants, 20 (1): 111-122. (In Persian)
Vogler, W.D., Perets, S. and Stephenson, A.G. 1999. Floral plasticity in an iteroparous plant: The interactive effects of genotype, environment and ontogeny in Campanula rapunculoides. American Journal of Botany, 86 (4): 482–494.
Wachira, F., Ng'etich, W., Omolo, J. and Mamati, G. 2002. Genotype × environment interactions for tea yields. Euphytica, 127 (2): 78-89.
Yousefi, B., Tabaei-Aghdaei, S.R., Darvish, F. and Assareh, M.H. 2009. Flower yield performance and stability of various Rosa damascena Mill. landraces under different ecological conditions. Scientia Horticulturae, 121: 333–339.