بررسی اثر متقابل فعالیت دو آنزیم کبدی و برخی مواد معدنی موجود در کبد جوجههای گوشتی
Subject Areas : Camel
1 - Department of Animal Science, FacultyofAgricultur, Shahrekord University, Shahrekord, Iran
Keywords: IDH, MDH, جوجه گوشتی, مواد معدنی, اثر متقابل آنزیم,
Abstract :
هدف از انجام این پژوهش بررسی اثر متقابل فعالیت دو آنزیم کبدی و برخی مواد معدنی موجود در کبد جوجههای گوشتی بوده است. تحقیق بر روی جوجههای گوشتی نر و ماده از سن 1 تا 56 روزگی انجام شد. اسید مالیک از سن 1 روزگی به آب آشامیدنی جوجهها در غلظتهای صفر (شاهد)، 05/0، 10/0 و 15/0 درصد اضافه شد و به طور آزاد در اختیار آنها قرار گرفت. جوجهها در سن 56 روزگی کشتار شده و بلافاصله کبد آنها جدا و قسمتی از آن هموژنایز و عصارهگیری شد و در عصارة حاصل، فعالیت آنزیمهای میلیت دهیدروژناز (MDH) و آیزوسیتریت دهیدروژناز (IDH) اندازهگیری شد. مواد معدنی نیز در باقیمانده کبد که در آون خشک شده بود، اندازهگیری شد. نتایج نشان داد که فعالیت IDH با افزایش غلظت میلیت مصرفی افزایش مییابد (05/0P<) ولی فعالیت MDH تفاوت معنیداری را بین تیمارهای تحت آزمون نشان نداد (05/0P<). جوجههای نر نیز 28 درصد بیشتر از جوجههای ماده فعالیت آنزیم IDH نشان دادند (05/0P<). روی و آهن نیز به ترتیب همبستگی معنیداری با فعالیت IDH و MDH نشان دادند (05/0P<). هیچ نوع همبستگی منفی و معنیداری بین غلظت مواد معدنی و غلظت سلنیوم کبد مشاهده نشد (05/0P<). البته همبستگی مثبت و معنیدار بین غلظت سرب، منیزیوم، نیکل، منگنز، جیوه و کبالت در کبد جوجهها مشاهده شد. نتیجه اینکه، افزودن میلیت به آب آشامیدنی جوجهها سبب شد تا غلظت آهن در کبد افزایش یابد اما روی ذخیرهسازی سایر مواد معدنی تأثیر معنیداری مشاهده نگردید.
Abdullah N., Osman A.K. and Salaman K.A. (2010). Monitoring of aflatoxins and heavy metals in some poultry feeds. AJFS. 4, 192-199.
AOAC. (2000). Official Methods of Analysis. 17th Ed. Association of Official Agricultural Chemists International. Gaithersburg, MD, USA.
Balnave D. (1975). The influence of essential fatty acids and food restriction on the specific activities of hepatic lipogenic and glutamate-metabolizing enzymes in the lying hen. Br. J. Nutr. 33, 439-445.
Bienfait H.F. (1996). Is there a metabolic link between H+ excretion and ferric reduction by roots of Fe-deficient plants – A viewpoint? J. Plant. Nutr. 19, 1211-1222.
Blonde D., Kresack E. and Kosicki G. (1967). The effects of ions and freeze-thawing on the supernatant and mitochondrial malate dehydrogenase. Can. J. Biochem. 45, 641-646.
Boling-Frankenbach S.D., Snow J.L., Parsons C.M. and Baker D.H. (2001). The effect of citric acid on the calcium and phosphorus requirements of chicks fed corn-soybean meal diets. Poult. Sci. 80, 783-788..
Brown D.G. and Burk R.F. (1973). Selenium retention in tissues and sperm of rats fed a torula yeast diet. J. Nutr. 103, 102-108.
Cheeseman A.J. and Clark J.B. (1988). Influence of the malate-aspartate shuttle on oxidative metabolism is a synaptosomes. J. Neurochem. 50, 1559-1565.
Djawdan M., Chippindale A.K., Rose M.R. and Bradley T.J. (1998). Metabolic reserves and evolved stress resistance in Derosophila melanogaster. Physiol. Zool. 71, 584-594.
Dousset J.C., Rioufol C., Philibert C. and P. Bourbon P. (1987). Effects of inhaled HF on cholesterol, carbohydrate and tricarboxylic acid metabolism in guinea pigs. Fluoride. 20, 137-141.
Edwards H.M. and Baker D.H. (1999). Effect of dietary citric acid on zinc bioavailability from soy products using an egg white diets with zinc sulfate hepatahydrate as the stander. Poult. Sci. 78, 113.
Ekmekci G., Somer G. and Sendil O. (2003). Simultaneous determination of copper, zinc and selenium in chicken liver by differential pulse polarography. Turk. J. Chem. 27, 347- 355.
Engle T.E., Nockels C.F., Kimberling C.V., Weaber D.L. and Johnson A.B. (1997). Zinc repletion with organic or inorganic forms of zinc and protein turnover in marginally zinc deficient calves.J. Anim. Sci. 75, 3074-3081.
Fleet J. and Salt D. (2009). Ionomics: mineral nutrition, physiology, and interactions as a biological system. J. Anim. Sci. 87, 370.
Goodridge A.G. and Ball O.(1967). Lipogenesis in the pigeon: in vivo studies. Am. J. Physiol. 213, 245-249.
Goodridge A.G. (1968). Conversion of [U14-C] glucose into carbon dioxide, glycogen, cholesterol and fatty acids in liver slices from embryonic and growing chicks. Biochem. J. 108, 655-661.
Gordon E., Newman C., Campbell A.M. and Williamson J.H. (2000). Purification and characterization of isocitrate dehydrogenase from Chlamydomonas reinhardtii. Department of Biology, Davidson College, Davidson.
Hill M. and Link J.E. (2009). Trace mineral interactions, known, unknown and not used. J. Anim. Sci. 87, 370.
Hoehl C., Oestreich R., Rosen P., Wiesner R. and Grieshaber M. (1987). Evidence for succinate production by reduction of fumarate during hypoxia in isolated adult rat heart cells. Arch. Biochem. Biophys. 259, 527-535.
Khan C.A. and Meijer G.A.L. (2005). The risk of contamination of food with toxic substances present in animal feed. Anim. Feed Sci. Technol. 133, 84-108.
Leveille G.A., O’Hea E.K. and Chakrabarty K. (1968). In vivo lipogenesis in the domestic chicken. Proc. Soc. Exp. Biol. Med. 128, 398-401.
Lowry O.H., Rosebrough N.J., Farr A.L. and Randall R.J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275.
Mc Donald P., Edwards R.A., Greenhalgh J.F.D., Morgan C.A., Sinclair L.A. and Wilkinson R.G. (2010). Animal Nutrition. Prentice Hall, Publisher.
Murakami K., Haneda M., Iwata S. and Yoshino M. (1997). Role of metal cations in the regulation of NADP-linked isocitrate dehydrogenase from porcine heart. Biometals. 10, 169-174.
Murakami K., Tsubouchi R., Fukayama M., Ogawa T. and Yoshino M. (2006). Oxidative inactivation of reduced NADP-generating enzymes in E. coli: iron-dependent inactivation with affinity cleavage of NADP-isocitrate dehydrogenase. Arch. Microbiol. 186, 385-392.
NRC. (1994). Nutrient Requirements of Poultry, 9th Rev. Ed. National Academy Press, Washington, DC.
Nix J. (2002). Trace minerals important for cattle reproduction. http://www.sweetlix.com.
Ogawa T., Murakami K., Mori H., Ishii N., Tomita M. and Yoshin M. (2007). Role of phosphoenolpyruvate in the NADP-isocitrate dehydrogenase and isocitrate lyase reaction in E. coli. J. Bacteriol. 189, 1176-1178.
Rehman K., Andleeb S., Mahmood A., Bukhar S.M., Naeem M.M. and Yousaf K.(2012).Translocation of zinc and nickel from poultry feed to broilers and their excretion through litters. Global Vet. 8, 660-664.
Rikans L.E., Moore D.R. and Snowden C.D. (1991). Sex-dependent differences in the effects of aging on antioxidant defense mechanisms of rat liver. Biochim. Biophys. Acta. 1074, 195-200.
Romsos D.R. and Leveille G.A. (1974). Effect of diet on activity of enzymes involved in fatty acid and cholesterol synthesis. Adv. Lipid Res. 12, 97-146.
Rosebrough R.W., Mcmurtry J.P. and Vasilatos-Younken R. (1999). Dietary fat and protein interactions in the broiler. Poult. Sci. 78, 992-998..
SAS Institute. (2009). SAS®/STAT Software, Release 9.2. SAS Institute, Inc., Cary, NC.
Skinner J.T., Izat A.L. and Waldroup P.W. (1991). Fumaric acid enhances performance of broiler chickens. Poult. Sci. 70, 1444-1447.
Spears J.W. (2000). Micronutrients and immune function in cattle. Proc. Nutr. Soc. 59, 1-8.
Tanaka K., Ohtani S. and Shigeno K. (1983). Effect of increasing dietary energy on hepatic lipogenesis in growing chicks. I. Increasing energy by carbohydrate supplementation. Poult. Sci. 62, 445-451.
Thomassen Y. and Aaseth J. (1986). Selenium in human tissues. Pp. 33-105 in Occurrence and Distribution of Selenium. M. Ihnat, Ed. Boca. Raton, FL, CRC Press.
Varrone S., Consiglio E. and Covelli I. (1970). The nature of inhibition of mitochondrial malate dehydrogenase by thyroxine, iodine, cyanide, and molecular iodine. Eur. J. Biochem. 13, 305-310.
Wiesner R.J., Kreutzer U., Rosen P. and Grieshaber M.K. (1988). Subcellular distribution of malate-aspartate cycle intermediates during normoxia and anoxia in the heart. Biochim. Biophys. Acta. 936, 114-123.
Yamaguchi M., Kura M. and Okada S. (1982). Role of zinc as an activator of mitochondrial function in rat liver. Biochem. Pharmacol. 31, 1289-1293.