اثر پرتوتابی گاما، الکترون و مادون قرمز بر ارزش غذایی و عوامل ضد تغذیهای دانه سورگوم
Subject Areas : CamelM. Rousta 1 , A.A. Sadeghi 2 , P. Shawrang 3 , M. Aimn Afshar 4 , M. Chamani 5
1 - Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Radiation Applications Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Karaj, Iran
4 - Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
5 - Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
Keywords: سورگوم, ترکیبات شیمیایی, پرتوتابی, عوامل ضد تغذیهای,
Abstract :
مطالعه حاضر اثرات پرتوتابی بر کیفیت غذایی و عوامل ضد تغذیهای دانه سورگوم را مورد بررسی قرار میدهد. اثر پرتوتابی الکترون و گاما در سطوح 10، 20 و 30 کیلوگری و همچنین پرتوتابی مادون قرمز در مدت زمان 60، 90 و 120 ثانیه بر ترکیبات شیمیایی، میزان و قابلیت دسترسی مواد معدنی، قابلیت هضم آزمایشگاهی نشاسته و پروتئین، مقدار کل ترکیبات فنولی، فیتات و تانن دانه سورگوم بررسی شد. نتایج این پژوهش نشان داد که ترکیبات شیمیایی دانه سورگوم تحت تأثیر پرتوتابی تغییری نخواهد کرد (05/0P>). پرتوتابی گاما، الکترون و مادون قرمز موجب افزایش قابلیت هضم نشاسته به ترتیب به میزان 8/3، 4/5 و 8/6 درصد شد. پرتوتابی مادون قرمز موجب کاهش قابلیت هضم پروتئین به میزان 23 درصد شد، در حالیکه پرتوتابی گاما و الکترون موجب افزایش قابلیت هضم پروتئین خام دانه سورگوم به ترتیب به میزان 6/6 و 5 درصد شد (05/0P>). میزان اسید فایتیک و تانن به طور معنیداری به وسیله پرتوتابی کاهش یافت در حالیکه میزان کل ترکیبات فنولی در مقایسه با نمونه شاهد افزایش پیدا کرد. نتایج نشان داد که میزان و قابلیت دسترسی مواد معدنی دانه سورگوم تغییر معنیداری نکرد به استثناء افزایش معنیدار در قابلیت استخراج کلسیم، فسفر، روی و آهن.
Akeson W.R. and Stahmann M.A. (1964). A pepsin-pancreatin digest index of protein quality.J. Nutr. 83, 257-261.
Al-Kaisey M.T., Abdul-Kader H.A., Mohammad M.H. and Saeed A.H. (2003). Effect of ɣ-irradiation on anti-nutritional factors in broad bean.Radiat Phys. Chem. 67, 493-496.
AOAC. (2000). Official Methods of Analysis. 13th Ed. Association of Official Analytical Chemists, Arlington, VA.
Byun E.H., Kim J.H., Sung N.Y., Choi J., Lim S.T., Kim K.H., Yook H.S., Byun M.W. and Lee J.W. (2008). Effects of gamma irradiation on the physical and structural properties of ß-glucan.Radiat. Phys. Chem. 77, 781-786.
Chapman H.D. and Pratt F.P. (1968). Ammonium molybdateam monium vanadate method for determination of phosphorous methods of analysis for soil plants and water California. Agriculture Division, California University, USA.
Chauhan B.M. and Mahjan H. (1988). Effect of natural fermentation on the extractability of minerals from pearl millet flour. J. Food Sci. 53, 1576-1577.
Choi J.I., Jae K.K., Periasamy S., Jae H.K., Hyun J.P., Myung W.B. and Ju W.L. (2009). Comparison of gamma ray and electron beam irradiation on extraction yield, morphological and antioxidant properties of polysaccharides from tamarind seed.Radiat. Phys. Chem. 78, 605-609.
Duodu K.G., Taylor J.R.N., Belton P.S. and Hamaker B.R. (2003). Factors affecting sorghum protein digestibility.J. Cereal Sci. 38, 117-131.
Ebrahimi S.R., Nikkhah A., Sadeghi A.A. and Raisali G. (2009). Chemical composition, secondary compounds, ruminal degradation and in vitro crude protein digestibility of gamma irradiated canola seed. Anim. Feed Sci. Technol. 151, 184-193.
Elkhalil E.A.I., El Tinay A.H., Mohamed B.E. and Elsheikh E.A.E. (2001). Effect of malt pre-treatment on phytic acid and in vitro protein digestibility of sorghum flour.Food Chem. 72, 29-32.
Ezeogu L.I., Duodu K.G., Emmanbux M.N. and Taylor J.R.N. (2008). Influence of cooking conditions on the protein matrix of sorghum and maize endosperm flours.Cereal Chem. 85, 397-402.
Fombang E.N., Taylor J.R.N., Mbofung C.M.F. and Minnaar A. (2005). Use of gamma irradiation to alleviate the protein poor digestibility of sorghum porridge. Food Chem. 91, 695-703.
Hagenimana A., Ding X. and Fang T. (2006). Evaluation of rice flour modified by extrusion cooking. J. Cereal Sci. 43, 38-46.
Hassan A.B., Osman A.M., Rushdi Mohamed A.H., Eltayeb M.M. and Diab E.E. (2009). Effect of gamma irradiation on the nutritional quality of maize cultivars (Zea mays) and Sorghum (Sorghum bicolor) grains.Pakistan J. Nutr. 8, 167-171.
Hemanalini G.K., Padma V., Jamuna R.R. and Saraswathi G. (1980). Nutritional evaluation of sprouted ragi.Nutr. Reprod. Int. 22, 271-7.
Huang S.J. and Mau J.L. (2007). Antioxidant properties of methanolic extract from antrodia camphorate with various doses of c-radiation. Food Chem. 105, 1702-1710.
Keya E.L. and Sherman U. (1997). Effects of a brief, intense infrared radiation treatment on the nutritional quality of maize, rice, sorghum, and beans. Food Nutr. Bull. 18(4), 382-387.
Khattab R.Y., Arntfield S.D. and Nyachoti C.M. (2009). Nutritional quality of legume seeds as affected by some physical treatments, Part 1: protein quality evaluation. LWT-Food Sci. Technol. 42, 1107-1112.
Kim J.K., Srinivasan P., Kim J.H., Choi J.I., Park H.J., Byun M.W. and Lee J.W. (2008). Structural and antioxidant properties of gamma irradiated hyaluronic acid. Food Chem. 109, 763-770.
Kim M.J., Yook H.S. and Byun M.W. (2000). Effects of gamma irradiation on microbial contamination and extraction yields of Korean medicinal herbs.Radiat. Phys. Chem. 57, 55-58.
McLaughlin W.L., Jia H., Wenxiu C. and Humphreys J.C. (1985). Response of radio chromic film dosimeter to gamma rays in different atmospheres.Radiat. Phys. Chem. 25, 793-796.
Mechi R., Canniatti-Brazaca S.G. and Arthur V. (2005). Avaliacãoquimica, nutricional e fatore santinutricionais do feijãopreto (Phaseolus vulgaris). Ciênc. Tecnol. Aliment., Campinas. 25(1), 109-114,
Murray R.K., Granner D.K., Mayes P.A. and Rodwell V.W. (2003). Harper's Biochemistry. McGraw-Hill, New York, NY, USA.
Mwasaru M.A., Reichert R.D. and Mukuru S.Z. (1988). Factors affecting the abrasive dehulling efficiency of high-tannin sorghum.Cereal Chem. 65(3), 171-174
Pino V.H.D. and Lajolo F.M. (2003). Efect oinhibitorio de los taninos del frijol carioca (Phaseolus vulgaris) sobre la digestibilidad de la faseolinapor dos sistemasmultienzimaticos.Cienc. Tecnol . Aliment. 23, 49-53.
Price M.L., Van Scoyoc S. and Butler L.G. (1978). A critical evaluation of vanillin reaction as an assay for tannin in sorghum.J. Agric. Food Chem. 26, 1214-1218.
Rao B.S.N. and Prabhavathi T. (1982). Tannin content of foods commonly consumed in India and its influence on ionisable iron.J. Sci. Food Agric. 33, 89-96.
Sade F.O. (2009). Proximate, antinutritional factors and functional properties of processed pearl millet (Pennisetum glaucum). J. Food Technol. 7(3), 92-97
Santas J., Carbo R., Gordon M.H. and Almajano M.P. (2008). Comparison of the antioxidant activity of two Spanish onion varieties.Food Chem. 107(3), 1210-1216.
Shawrang P., Nikkhah A., Zare-Shahneh A., Sadeghi A.A., Raisali G. and Moradi-Shahrebabak M. (2007). Effects of gamma irradiation on protein degradation of soybean meal.Anim. Feed Sci. Technol. 134, 140-151.
Shawrang P., Nikkhah A., Zare-Shahneh A., Sadeghi A.A., Raisali G. and Moradi-Shahrebabak M. (2008). Effects of gamma irradiation on chemical composition and ruminal protein degradation of canola meal.Radiat. Phys. Chem. 77, 918-922.
Shawrang P., Sadeghi A.A., Behgar M., Zareshahi H. and Shahhoseini G. (2011). Study of chemical compositions, anti-nutritional contents and digestibility of electron beam irradiated sorghum grains. Food Chem. 125, 376-379.
Siddhuraju P., Makkar H.P.S. and Becker K. (2002). The effect of ionising radiation on anti-nutritional factors and the nutritional value of plant materials with reference to human and animal food. Food Chem. 78, 187-205.
Sun T., Powers J.R. and Tang J. (2007). Evaluation of the antioxidant activity of asparagus, broccoli and their juices.Food Chem. 105(1), 101-106.
Taghinejad M., Nikkhah A., Sadeghi A.A., Raisal G. and Chamani M. (2009). Effects of gamma irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of full-fat soybean.Asian-australas J. Anim. Sci. 22, 534-541.
Urbano G., Lopez-Jurado M., Hernandez J., Fernandez M., Moreu M.E., Frias J., Diaz-Pollan C., Prodanov M., Vidal V. and Prodanov C. (1995). Nutritional assessment of raw, heated and germinated lentils. J. Agric. Food Chem. 43, 1871-1877.
Villavicencio A.L.C.H., Mancini-Filho J., Delincée H. and Greiner R. (2000). Effect of irradiation on anti-nutrients (total phenolics, tannins and phytate) in Brazilian beans. Radiat. Phys. Chem. 57, 289-293.
Wheeler E.I. and Ferrel R.E. (1971). Methods for phytic acid determination in wheat and wheat fractions.Cereal Chem. 48, 312-320.
WHO. (1981). Wholesomeness of irradiated food : report of a Joint FAO/IAEA/WHO Expert Committee .Geneva: World Health Organization.
Wu D., Shu Q., Wang Z. and Xia Y. (2002). Effect of gamma irradiation on starch viscosity and physicochemical properties of different rice.Radiat. Phys. Chem. 65, 79-86.
Zamora R.G. and Veum J.L. (1979). The nutritive value of dehulled soybeans fermented with Aspergillus oryzae or Rhizopus oligosporus as evaluated by rats. J. Nutr. 109, 1333-1338.