Dietary Supplementation of Enzymes: An Approach to Mitigate Ammonia Emission during Broiler Production
Subject Areas : CamelS. Sugiharto 1 , I. Agusetyaningsih 2 , E. Widiastuti 3 , H.I. Wahyuni 4 , T. Yudiarti 5 , T.A. Sartono 6
1 - Department of Animal Science, Faculty of Animal and Agricultural Science, Universitas Diponegoro, Semarang, Central Java, Indonesia
2 - Department of Animal Science, Faculty of Animal and Agricultural Science, Universitas Diponegoro, Semarang, Central Java, Indonesia
3 - Department of Animal Science, Faculty of Animal and Agricultural Science, Universitas Diponegoro, Semarang, Central Java, Indonesia
4 - Department of Animal Science, Faculty of Animal and Agricultural Science, Universitas Diponegoro, Semarang, Central Java, Indonesia
5 - Department of Animal Science, Faculty of Animal and Agricultural Science, Universitas Diponegoro, Semarang, Central Java, Indonesia
6 - Department of Animal Science, Faculty of Animal and Agricultural Science, Universitas Diponegoro, Semarang, Central Java, Indonesia
Keywords:
Abstract :
Abouelenien A.F., Khalf-Alla F., Mousa-Balabel T., El-Midany S. and Abd El-Latif Nasser M. (2016). Effect of stocking density and bird age on air ammonia, performance and blood parameters of broilers. World Vet. J. 6(3), 130-136.
Akter M., Graham H. and Iji P.A. (2019). Response of broiler chickens to diets containing different levels of sodium with or without microbial phytase supplementation. J. Anim. Sci. Technol. 61(2), 87-95.
Alabi O.O., Shoyombo A.J., Akpor O.B., Oluba O.M. and Adeyonu A.G. (2019). Exogenous enzymes and the digestibility of nutrients by broilers: A mini review. Int. J. Poult. Sci. 18(9), 404-409.
Al-Kerwi M.S.M., Mardenli O., Jasim M.R.M. and Al-Majeed M.A. (2022). Effects of harmful gases emitted from poultry houses on productive and health performance. IOP Conf. Ser. Earth Environ. Sci. 1060(1), 12082-12097.
Al-Qahtani M., Ahiwe E.U., Abdallh M.E., Changẚ E.P., Gausi H., Bedford M.R. and Iji P.A. (2021). Endogenous enzyme activities and tibia bone development of broiler chickens fed wheat-based diets supplemented with xylanase, β-glucanase and phytase. Anim. Biosci. 34(6), 1049-1057.
Anjum M.S. and Chaudhry A.S. (2010). Using enzymes and organic acids in broiler diets. J. Poult. Sci. 47, 97-105.
Arifudin K., Sarjana T.A., Muryani R., Mahfudz L.D., Sunarti D., Sarengat W. and Angkeke I.P. (2019). Zonation in closed house affecting ammonia emission, immune system and broiler performance in the dry season. IOP Conf. Ser. Earth Environ. Sci. 247(1), 12035-12044.
Bailey M.A., Hess J.B., Krehling J.T. and Macklin K.S. (2021). Broiler performance and litter ammonia levels as affected by sulfur added to the bird’s diet. J. Appl. Poult. Res. 30(2), 100159-100167.
Beski S.S., Swick R.A. and Iji P.A. (2015). Specialized protein products in broiler chicken nutrition: A review. Anim. Nutr. 1(2), 47-53.
Brouček J. and Čermák B. (2015). Emission of harmful gases from poultry farms and possibilities of their reduction. Ekológia. 34(1), 89-100.
Bryan D.D.S.L., Abbott D.A., Van Kessel A.G. and Classen H.L. (2019). In vivo digestion characteristics of protein sources fed to broilers. Poult. Sci. 98(8), 3313-3325.
Carey J.B., Lacey R.E. and Mukhtar S. (2004). A review of literature concerning odors, ammonia, and dust from broiler production facilities: 2. Flock and house management factors. J. Appl. Poult. Res. 13(3), 509-513.
Chen J., Jin A., Huang L., Zhao Y., Li Y., Zhang H., Yang X. and Sun Q. (2021). Dynamic changes in lung microbiota of broilers in response to aging and ammonia stress. Front. Microbiol. 12, 1-11.
Cho H.M., Hong J.S., Kim Y.B., Nawarathne S.R., Choi I., Yi Y.J., Wu D., Lee H., Han S.E., Nam K.T., Seoung E.I. and Heo J.M. (2020). Responses in growth performance and nutrient digestibility to a multi-protease supplementation in amino acid-deficient broiler diets. J. Anim. Sci. Technol. 62(6), 840-851.
da Silva J.M.S., de Oliveira N.R., Gouveia A.B.V.S., Vieira R.A., dos Santos R.O.F., Minafra C.S. and dos Santos F.R. (2021). Effect of protease supplementation on the digestibility of amino acids in animal-origin meals for broiler diets. Czech J. Anim. Sci. 66, 29-37.
de Sousa F.C., Tinôco I.F.F., Silva J.N., Baptista F.D.J.F., Souza C.F. and Silva A.L. (2017). Gas emission in the poultry production. J. Anim. Behav. Biometeorol. 5(2), 49-55.
dos Santos Andrade T., Nunes R.V., Wachholz L., da Silva I.M. and de Freitas D.M. (2018). The effect of exogenous enzymes on the performance and digestibility of nutrients in broiler. Semina: Cien. Agrar. 39(2), 711-717.
Effiong M.E., Unah U.L., Enyenihi G.E. and Ndelekwute E.K. (2019). Dietary effect of feed grade enzymes on growth and digestive physiology of broiler chickens fed rice bran-based diet. MOJ Anat. Physiol. 6, 74-78.
Gallardo C., Dadalt J.C. and Trindade Neto M.A. (2018). Nitrogen retention, energy, and amino acid digestibility of wheat bran, without or with multicarbohydrase and phytase supplementation, fed to broiler chickens. J. Anim. Sci. 96(6), 2371-2379.
Giacobbo F.C., Eyng C., Nunes R.V., de Souza C., Teixeira L.V., Pilla R., Suchodolski J.S. and Bortoluzzi C. (2021). Influence of enzyme supplementation in the diets of broiler chickens formulated with different corn hybrids dried at various temperatures. Animals. 11(3), 643-654.
Guthrie S., Giles S., Dunkerley F., Tabaqchali H., Harshfield A., Ioppolo B. and Manville C. (2018). The Impact of Ammonia Emissions from Agriculture on Biodiversity. RAND Corporation and the Royal Society, Cambridge, UK. Available at: https://royalsociety.org/-/media/policy/projects/evidence-synthesis/Ammonia/Ammonia-report.pdf Accessed Jan. 2023.
Han H., Zhou Y., Liu Q., Wang G., Feng J. and Zhang M. (2021). Effects of ammonia on gut microbiota and growth performance of broiler chickens. Animals. 11(6), 1716-1725.
Hidayat C. and Purwanti S. (2021). Reducing air pollution from broiler farms. IOP Conf. Ser. Earth Environ. Sci. 788(1), 12150-12159.
Jabbar A., Tahir M., Alhidary I.A., Abdelrahman M.A., Albadani H., Khan R.U., Selvaggi M., Laudadio V. and Tufarelli V. (2021). Impact of microbial protease enzyme and dietary crude protein levels on growth and nutrients digestibility in broilers over 15–28 days. Animals. 11(9), 2499-2507.
Javaid A., Younas F., Ullah I. and Yasinzai M. (2022). Impact of an indigenously produced multienzyme complex from Bacillus subtilis KT004404 on growth and blood parameters in broiler chicken. PLoS ONE. 17(7), e0271445.
Law F.L., Zulkifli I., Soleimani A.F., Liang J.B. and Awad E.A. (2018). The effects of low-protein diets and protease supplementation on broiler chickens in a hot and humid tropical environment. Asian-Australasian J. Anim. Sci. 31(8), 1291-1300.
Leinonen I. and Williams A.G. (2015). Effects of dietary protease on nitrogen emissions from broiler production: a holistic comparison using Life Cycle Assessment. J. Sci. Food Agric. 95(15), 3041-3046.
Liu Z., Wang L., Beasley D. and Oviedo E. (2007). Effect of moisture content on ammonia emissions from broiler litter: A laboratory study. J. Atmos. Chem. 58(1), 41-53.
Liu Q.X., Zhou Y., Li X.M., Ma D.D., Xing S., Feng J.H. and Zhang M.H. (2020). Ammonia induce lung tissue injury in broilers by activating NLRP3 inflammasome via Escherichia/shigella. Poult. Sci. 99(7), 3402-3410.
Lourenco J.M., Nunn S.C., Lee E.J., Dove C.R., Callaway T.R. and Azain M.J. (2020). Effect of supplemental protease on growth performance and excreta microbiome of broiler chicks. Microorganisms. 8(4), 475-483.
Malomo G.A., Bolu S.A., Madugu A.S. and Usman Z.S. (2018). Nitrogen emissions and mitigation strategies in chicken production. Anim. Husband. Nutrt. 43, 43-62.
McCafferty K.W., Choct M., Musigwa S., Morgan N.K., Cowieson A.J. and Moss A.F. (2022). Protease supplementation reduced the heat increment of feed and improved energy and nitrogen partitioning in broilers fed maize-based diets with supplemental phytase and xylanase. Anim. Nutr. 10(2022), 19-25.
Miles D.M., Brooks J.P., McLaughlin M.R. and Rowe D.E. (2013). Broiler litter ammonia emissions near sidewalls, feeders, and waterers. Poult. Sci. 92(7), 1693-1698.
Miles D.M., Rowe D.E. and Cathcart T.C. (2011). High litter moisture content suppresses litter ammonia volatilization. Poult. Sci. 90(7), 1397-1405.
Naseem S. and King A.J. (2018). Ammonia production in poultry houses can affect health of humans, birds, and the environment-techniques for its reduction during poultry production. Environ. Sci. Pollut. Res. 25(16), 15269-15293.
Nazemzadeh S., Heshmat G. and Ansari H. (2017). Effect of supplemented ProAct (CT) Protease enzyme on performance and the amount of protein excreted in feces of broiler chickens. J. Livest. Sci. 8, 115-121.
Oxenboll K.M., Pontoppidan K. and Fru-Nji F. (2011). Use of a protease in poultry feed offers promising environmental benefits. Int. J. Poult. Sci. 10(11), 842-848.
Park J.H. and Kim I.H. (2018). Effects of a protease and essential oils on growth performance, blood cell profiles, nutrient retention, ileal microbiota, excreta gas emission, and breast meat quality in broiler chicks. Poult. Sci. 97(8), 2854-2860.
Pessôa G.B.S., Ribeiro Junior V., Albino L.F.T., Araújo W.A.G., Silva D.L., Hannas M.I. and Rostagno H.S. (2016). Enzyme complex added to broiler diets: effects on performance, metabolizable energy content, and nitrogen and phosphorus balance. Brazilian J. Poult. Sci. 18, 467-474.
Qaisrani S.N., Hussain A.I., Naveed S., Bibi F., Akram C.A., Pasha T.N., Asif M., Irshad I. and Bilal R.M. (2022). Effects of protein source, whole wheat and butyric acid on live performance, gut health and amino acid digestibility in broiler chickens. Metabolites. 12(10), 989-997.
Rehman Z.U., Kamran J., Abd El-Hack M.E., Alagawany M., Bhatti S.A., Ahmad G., Saleem A., Ullah Z., Yameen R.M.K. and Ding C. (2017). Influence of low-protein and low-amino acid diets with different sources of protease on performance, carcasses and nitrogen retention of broiler chickens. Anim. Prod. Sci. 58(9), 1625-1631.
Shad A.A., Ahmad T., Iqbal M.F. and Asad M.J. (2022). Effects of a novel protease from bacillus subtilis k-5 in low protein corn distiller dried grains with solubles (cDDGS) based diets on performance and nutrients digestibility in broiler chickens. Brazilian J. Poult. Sci. 24(2), 1-12.
Sugiharto S. (2016). Role of nutraceuticals in gut health and growth performance of poultry. J. Saudi Soc. Agric. Sci. 15(2), 99-111.
Sugiharto S. and Ranjitkar S. (2019). Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review. Anim. Nutr. 5(1), 1-10.
Sugiharto S. (2020). Alleviation of heat stress in broiler chicken using turmeric (Curcuma longa)-a short review. J. Anim. Behav. Biometeorol. 8(3), 215-222.
Sugiharto S. (2022). Feeding fermented agricultural byproducts as a potential approach to reduce carbon footprint from broiler production–a brief overview. Rev. Agric. Sci. 10, 90-100.
Swelum A.A., El-Saadony M.T., Abd El-Hack M.E., Ghanima M.M.A., Shukry M., Alhotan R.A., Hussein E.O.S., Suliman G.M., Ba-Awadh H., Ammari A.A., Taha A.E. and El-Tarabily K.A. (2021). Ammonia emissions in poultry houses and microbial nitrification as a promising reduction strategy. Sci. Total Environ. 781(2021), 146978-146985.
Tillman A.D., Hartadi H., Reksohadiprodjo S., Prawirokusumo S. and Lebdosoekojo S. (2005). Ilmu Makanan Ternak Dasar. Gadjah Mada University Press, Yogyakarta, Indonesia.
Van Emous R.A., Winkel A. and Aarnink A.J.A. (2019). Effects of dietary crude protein levels on ammonia emission, litter and manure composition, N losses, and water intake in broiler breeders. Poult. Sci. 98(12), 6618-6625.
Vilela M.O., Gates R.S., Souza C.F., Teles Junior C.G.S. and Sousa F.C. (2020). Nitrogen transformation stages into ammonia in broiler production: sources, deposition, transformation, and emission into the environment. DYNA. 87(214), 221-228.
von Bobrutzki K., Ammon C., Berg W., Einert P., Fiedler M., Müller H.J., Scherer D. and Strohbach B. (2012). Ammonia emissions from a broiler farm: spatial variability of airborne concentrations in the vicinity and impact on adjacent woodland. Environ. Monitor. Asses. 184(6), 3775-3787.
Wu D., Choct M., Wu S.B., Liu Y.G. and Swick R.A. (2017). Carbohydrase enzymes improve performance of broilers fed both nutritionally adequate and marginal wheat-based diets. J. Appl. Anim. Nutr. 5, 12-22.
Xing H., Luan S., Sun Y., Sa R. and Zhang H. (2016). Effects of ammonia exposure on carcass traits and fatty acid composition of broiler meat. Anim. Nutr. 2(4), 282-287.
Yahav S. (2004). Ammonia affects performance and thermoregulation of male broiler chickens. Anim. Res. 53(4), 289-293.
Yaqoob M.U., Yousaf M., Iftikhar M., Hassan S., Wang G., Imran S., Zahid M.U., Iqbal W. and Wang M. (2022). Effect of multi-enzymes supplementation on growth performance, meat quality, ileal digestibility, digestive enzyme activity and caecal microbiota in broilers fed low-metabolizable energy diet. Anim. Biosci. 35(7), 1059-1068.
Zhang J., Li C., Tang X., Lu Q., Sa R. and Zhang H. (2015a). Proteome changes in the small intestinal mucosa of broilers (Gallus gallus) induced by high concentrations of atmospheric ammonia. Proteome Sci. 13(1), 1-14.
Zhang J., Li C., Tang X., Lu Q., Sa R. and Zhang H. (2015b). High concentrations of atmospheric ammonia induce alterations in the hepatic proteome of broilers (Gallus gallus): An iTRAQ-based quantitative proteomic analysis. PLoS One. 10(4), e0123596.
Zhou Y., Zhang M., Zhao X. and Feng J. (2021). Ammonia exposure induced intestinal inflammation injury mediated by intestinal microbiota in broiler chickens via TLR4/TNF-α signaling pathway. Ecotoxicol. Environ. Saf. 226(2021), 1-11.