اثرات فرآوری حرارتی دانه سویا و بذر کتان بر بیوهیدروژناسیون اسیدهای چرب شکمبه به روش in situ
Subject Areas : Camelم.س. صمدی 1 , ی. چاشنی دل 2 , ع. دیرانده 3 , ه. دلدار 4
1 - Department of Animal Science, Faculty of Animal Science and Fishery, Sari Agricultural Science and Natural Resources University, Sari, Iran
2 - Department of Animal Science, Faculty of Animal Science and Fishery, Sari Agricultural Science and Natural Resources University, Sari, Iran
3 - Department of Animal Science, Faculty of Animal Science and Fishery, Sari Agricultural Science and Natural Resources University, Sari, Iran
4 - Department of Animal Science, Faculty of Animal Science and Fishery, Sari Agricultural Science and Natural Resources University, Sari, Iran
Keywords: بذر کتان, بیوهیدروژناسیون, فرآوری حرارتی, <i>in situ</i>, دانه سویا,
Abstract :
هدف از این مطالعه، اندازهگیری و مقایسه میزان بیوهیدروژناسیون (BH) اسیدهای چرب در سه شکل از دانه سویا و بذر کتان (خام، اکسترود و برشته شده) به روش in situ بود. کیسههای نایلونی (10×5 سانتیمتر) حاوی چهار گرم سویا و بذر کتان اکسترود، خام و برشته شده بودند که در شکمبه میشهای فیستوله شده به مدت 4، 8، 12 و 24 ساعت انکوبه شدند. نتایج نشان داد که میزان بیوهیدروژناسیون اسید لینولئیک (18:2C) تنها در زمان 4 ساعت پس از انکوباسیون، در مقایسه با سایر زمانها در بذر کتان خام به طور معنیداری بالاتر بود (P<0.05). میزان اسید لینولئیک (18:2C) در ساعات 8 و 12 برای سویای خام در مقایسه با اکسترود و برشته بالاتر بود (P<0.05). مقادیر ترانس-18:1C (اکتادکادینوئیک اسید) در چهار زمان شکمبهگذاری در هر سه شکل از بذر کتان مشابه بود (P>0.05). اما نسبتهای این اسید چرب در سویای برشته شده برای انواع اکسترود و خام در 12 ساعت پس از انکوباسیون به طور معنیداری پایینتر بود (P<0.05). هیچ تفاوت معنیداری در میزان بیوهیدروژناسیون اسید لینولنیک (18:3C) در سه شکل از بذر کتان و سویا مشاهده نشد (P>0.05). تفاوتها بین سیس-9، ترانس-11 اسید لینولئیک کونژوگه (CLA) در سه شکل از بذر کتان در تمامی زمانهای انکوباسیون معنیدار نبود (P>0.05)، لیکن مقادیر CLA در ساعات 12 و 24 انکوباسیون برای سویای اکسترود به طور معنیداری بالاتر بود (P<0.05). سهم اسید استئاریک (18:0C) برای سه شکل از بذر کتان (خام، اکسترود و برشته) در تمامی ساعات انکوباسیون هیچ تفاوت معنیداری را نشان نداد (P>0.05). مقدار 18:0C پس از 24 ساعت انکوباسیون برای سویای خام به طور معنیداری بالاتر بود (P<0.05). بر اساس نتایج به دست آمده، فرآوری حرارتی اثرات مطلوبتری بر حفظ اسید لینولئیک، در مقایسه با اسید لینولنیک موجود در دانههای سویا و بذر کتان در برابر بیوهیدروژناسیون شکمبهای در پی داشت.
Agazzi A., Bayourthe C., Nicot M.C., Troegeler-Meynadier A., Moncoulon R. and Enjalbert F. (2004). In situ ruminal biohydrogenation of fatty acids from extruded soybeans: effects of dietary adaptation and of mixing with lecithin or wheat straw. Anim. Feed Sci. Technol. 117, 165-175.
Akarim F., Nicot M.C., Weill P. and Enjalbert F. (2006). Effects of preconditioning and extrusion of linseed on the ruminal biohydrogenation of fatty acids. In vitro and in situ studies. Anim. Res. 55, 261-271.
Beam T.M., Jenkins T.C., Moate P.J., Kohn R.A. and Palmquist D.L. (2000). Effects of amount and source of fat on the rates of lipolysis and biohydrogenation of fatty acids in ruminal contents. J. Dairy Sci. 83, 2564-2573.
Bernal S.G., O’Donnell A.M., Vicini J.L., Hartnell. G.F. and Bauman D.E. (2010). Enhancing omega-3 fatty acids in milk fat of dairy cows by using stearidonic acid-enriched soybean oil from genetically modified soybeans. J. Dairy Sci. 93, 32-37.
Bilby T.R., Sozzi A., Lopez M.M., Silvestre F.T., Ealy A.D., Staples C.R. and Thatcher W.W. (2006c). Pregnancy, bovine somatotropin, and dietary n-3 fatty acids in lactating dairy cows: I. ovarian, conceptus, and growth hormone-insulin-like growth factor system responses. J. Dairy Sci. 89, 3360-3374.
Castellano C.A., Audet I., Bailey J.L., Chouinard P.Y., Laforest J.P. and Matte J.J. (2010). Effect of dietary n-3 fatty acids (fish oils) on boar reproduction and semen quality. J. Anim. Sci. 88, 2346-2355.
Chouinard P.Y., Corneau L., Butler W.R., Chilliard Y., Drackley J.K. and Bauman D.E. (2001). Effect of dietary lipid source on conjugated linoleic acid concentrations in milk fat. J. Dairy Sci. 84, 680-690.
Chouinard P.Y., Le´vesque J., Girard V. and Brisson G.J. (1997). Dietary soybeans extruded at different temperatures: Milk composition and in situ fatty acid reactions. J. Dairy Sci. 80, 2913-2924.
Enjalbert F., Eynard P., Nicot M.C., Troegeler-Meynadier A., Bayourthe C. and Moncoulon R. (2003). In vitro versus in situ ruminal biohydrogenation of unsaturated fatty acids from a raw or extruded mixture of ground canola seed/canola meal. J. Dairy Sci. 86, 351-359.
Gonthier C., Mustafa A.F., Ouellet D.R., Chouinard P.Y., Berthiaume R. and Petit H.V. (2005). Feeding micronized and extruded flaxseed to dairy cows: Effects on blood parameters and milk fatty acid composition. J. Dairy Sci. 88, 748-756.
Harfoot C.G., Noble R.C. and Moore J.H. (1973a). Factors influence in the extent of biohydrogenation of linoleic acid by rumen micro-organisms in vitro. J. Sci. Food Agric. 24, 96l-970.
Harfoot C.G., Noble R.C. and Moore J.H. (1973b). Food particles as a site for biohydrogenation of unsaturated fatty acids in the rumen. Biochem. J. 132, 829-832.
Jenkins T.C. and Adams C.S. (2002). The biohydrogenation of linoleamide in vitro and its effects on linoleic acid concentration in duodenal contents of sheep. Anim. Sci. 80, 533-540.
Kaleem A., Enjalbert F., Farizon Y. and Troegeler-Meynadier A. (2013a). Effect of chemical form, heating, and oxidation products of linoleic acid on rumen bacterial population and activities of biohydrogenating enzymes. J. Dairy Sci. 96, 7167-7180.
Kaleem M., Farizon Y., Enjalbert F. and Troegeler-Meynadier A. (2013b). Lipid oxidation products of heated soybeans as a possible cause of protection from ruminal biohydrogenation. European J. Lipid Sci. Technol. 115, 161-169.
Ørskov E.R.I. and Mc Donald I.M. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92, 499-503.
Park P.W. and Goins R.E. (1994). In situ preparation of fatty acid methyl esters for analysis of fatty acid composition in foods. J. Food Sci. 59, 1262-1266.
Perrier R., Michalet-Doreau B., Bauchart D. and Doreau M. (1992). Assessment of an in situ technique to estimate the degradation of lipids in the rumen. J. Sci. Food Agric. 59, 449-455.
Reddy P.V., Morrill J.L. and Nagaraja T.G. (1994). Release of free fatty acids from raw or processed soybeans and subsequent effects on fiber digestibilities. J. Dairy Sci. 77, 3410-3415.
Rego A.O., Portugal V.P., Sousa B.M., Rosa H.J.D., Vozuela M.C., Borba E.S.A. and Bessa R.J.B. (2004). Effect of diet on the fatty acid pattern of milk from dairy cows. Anim. Res. 53, 213-220.
Reiser R. (1951). Hydrogenation of polyunsaturated fatty acids by the ruminant. Fed. Proc. 10, 236-245.
SAS Institute. (2009). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Smith S.S., Neuringer M. and Ojeda S.R. (1989). Essential fatty acid deficiency delays the onset of puberty in the female rat. Endocrinology. 125, 1650-1659.
Staples C.R. and Thatcher W.W. (2005). Effects of fatty acids on reproduction of dairy cows. Pp. 229-256 in Recent Advances in Animal Nutrition. P.C. Garnsworthy and Wiseman J. Eds. Nottingham University Press, Nottingham, United Kingdom.
Troegeler-Meynadier A., Nicot M.C. and Enjalbert F. (2006b). Effects of heating process of soybeans on ruminal production of conjugated linoleic acids and trans-octadecenoic acids in situ. Rev. Med. Vet. 157, 509-514.
Troegeler-Meynadier A., Puaut S., Farizon F. and Enjalbert F. (2014). Effects of the heating process of soybean oil and seeds on fatty acid biohydrogenation in vitro. J. Dairy Sci. 97, 1-11.
Van Nevel C.J. and Demeyer D.I. (1996). Influence of pH on lipolysis and biohydrogenation of soybean oil by rumen contents in vitro. Reprod. Nutr. Dev. 36, 53-63.
Wood J.D., Richardson R.I., Nute G.R., Fisher A.V., Campo M.M., Kasapidou E., Sheard P.R. and Enser M. (2003). Effects of fatty acids on meat quality: a review. Meat Sci. 66, 21-32.