اثرات تزریق ویتامینهای B6 و B12 داخل تخم مرغهای تزریق شده با اتانول بر درصد جوجهدرآوری، عملکرد و اندامهای احشایی جوجههای گوشتی تحت تنش سرما در دوره پرورش
Subject Areas : Camel
1 - Department of Animal Science, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
2 - Department of Animal Science, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
Keywords: عملکرد, اتانول, جوجهگوشتی, ویتامینهای ب,
Abstract :
در دو آزمایش مجزا اثرات تزریق ویتامینهای ب6 و ب12 در تخم مرغهای بارور تحت تنش تزریق اتانول بر جوجهدرآوری (اول)، عملکرد و اندامهای احشایی جوجههای گوشتی تحت تنش سرمایی طی پرورش (دوم) بررسی شد. تعداد 510 عدد تخم مرغ بارور داخل انکوباسیون قرار گرفتند. تعداد 180 عدد از تخم مرغها، بعنوان شاهد لحاظ شد (شاهد بدون تزریق، شاهد با سوراخ کردن پوسته و شاهد با تزریق آب مقطر). به 110 عدد تخم مرغ، 25 میکرولیتر محلول (1:1) آب مقطر + اتانول 5/47 درصد تزریق گردید. به دو گروه دیگر هر یک به تعداد 110 عدد تخم مرغ، به ترتیب 25 میکرولیتر محلول (1:1) اتانول 5/47 درصد + 100 میکرولیتر ویتامین ب6 و 25 میکرولیتر محلول (1:1) اتانول 5/47 درصد + 1000 میکرولیتر ویتامین ب12 تزریق شدند. از جوجههای تفریخ شده، تعداد 240 قطعه به آزمایش دوم اختصاص یافت. جوجههای تفریخ شده به چهار گروه آزمایشی تقسیم شدند. دمای سالن در 28 تا 42 روزگی در 2 ± 12 درجه سانتیگراد نگهداری گردید. درصد جوجهدرآوری در گروه اتانول به طور معنیداری کاهش یافت (05/0P<). وزن بدن در سن یکروزگی در گروه شاهد در مقایسه با سایر گروهها کمترین بود (05/0P<). تفاوت معنیداری در افزایش وزن بدن و مصرف خوراک در سن 1 تا 14 روزگی بین گروههای ب6 و ب12 نبود. تیمارهای آزمایشی بر روی ضریب تبدیل خوراک و وزن اندامهای احشایی تأثیری نداشتند (05/0P>). تزریق ویتامینهای ب6 و ب12 استرس اکسیداتیو را در جنین جوجههای گوشتی بهبود داد. تفاوت معنیداری در عملکرد جوجههای تفریخ شده در شرایط سرما مشاهده نشد.
Al-Daraji H.J., Al-Mashadani A.A., Al-Hayani W.K., Al-Hassani A.S. and Mirza H.A. (2012). Effect of in ovo injection with L-arginine on productive and physiological traits of Japanese quail. South African. J. Anim. Sci. 42, 139-145.
Ameenuddin S., Sunde M.L., DeLuca H.F., Ikekawa N. and Kobayashi Y. (1983). Support of embryonic chick survival by vitamin D metabolites. Arch. Biochem. Biophys. 226, 666-670.
Bender D.A. (1999). Nonnutritional uses of vitamin B6. Br. J. Nutr. 1, 7-20.
Berning E.J., Bernhardson N., Coleman K. and Farhat D.A. (2013). Ethanol and / or Taurineinduced oxidative stress in chick embryos. J. Amino Acids. 1, 1-11.
Bhanja S.K., Mandal A.B., Agarwal S.K., Majumdar S. and Bhattacharyya A. (2007). Effect of in ovo injection of vitamins on the chick weight and posthatch growth performance in broiler chickens. Pages 143-146 in Proc. 16th European Symp. Poult. Nutr., Strasbourg, France.
Bigot K., Mignon-Grasteau S., Picard M. and Tesseraud S. (2003). Effects of delayed feed intake on body intestine and muscle development in neonate broilers. Poult. Sci. 82, 781-788.
Blalock T.L., Haxton J.P. and Garlich J.D. (1984). Homoral immunity in chicks experiencing marginal vitamin B6 deficiency. J. Nutr. 114, 312-322.
Bleich S., Carl M., Bayerlein K., Reulbach U., Biermann T., Hillemacher T., Bonsch D. and Kornhuber J. (2005). Evidence of increased homocysteine levels in alcoholism, the franconian alcoholism research studies. Alcohol. Clin. Exp. Res. 29, 334-336.
Bleich S., Bandelow B., Javaheripour K., Muller A., Degner D., Wilhelm J., Havemann Reinecke Y., Sperling W., Ruther E. and Kornhuber J. (2003). Hyperhomocysteinemia as a new risk factor for brain shrinkage in patients with alcoholism. Neurosci. Let. 335, 179-182.
Bleich S., Degner D., Wiltfang J., Maler J.M., Niedmann P., Cohrs S., Mangholz A., Porzig J., Spung R., Ruther E. and Kornhuber J. (2000). Elevated homocysteine levels in alcohol withdraw. Alcohol. 35, 351-354.
Bree A., Verschuren W.M., Blom H.J. and Kromhout D. (2001). Association between B vitamin intake and plasma homocysteine concentration in the general Dutch population aged 20-65 y. Am. J. Clin. Nutr. 73, 1027-1033.
Careghi C., Tona K., Buyse J., Decuypere E. and Bruggeman V. (2005). The effects of the spread of hatch and interaction in delayed feed access after hatch on broiler performance until seven days of age. Poult. Sci. 84, 1314-1320.
Carrasco M.P., Jimenez-Lopez J.M., Segovia J.L. and Marco C. (2002). Comparative study of the effects of shortand longterm ethanol treatment and alcohol withdrawal on phospholipid biosynthesis in rat hepatocytes. Comp. Biochem. Physiol. B.Biochem. Mol. Biol. 131, 491-497.
Desilva A., Decourten M., Zimmet P., Nicholson G. and Kotowicz M. (1998). Lifestyle factors fail to explain the variation in plasma leptin concentrations in women. J. Nutr. 14, 653-657.
Dibner J.J., Knight C.D., Kitchell M.L., Atwell C.A., Downs A.C. and Ivey F.J. (1998). Early feeding and development of the immune system in neonatal poultry. J. Appl. Poult. Res. 7, 425-436.
Dibner J.J. and Richards J.D. (2004). The digestive system, Challenges and opportunities. J. Appl. Poult. Res. 31, 86-93.
Dibner J.J., Richards J.D. and Knight C.K. (2008). Microbial imprinting in gut development and health. J. Appl. Poult. Res. 17, 174-188.
Elaroussi M.A., Abutaleb A.M. and Elbarkouky E. (2003). Manipulating embryonic growth by in ovo nutrient administration to Japanese quail eggs. J. Egypt. German. Soc. Zool. Verteb. Anat. Embryol. 40, 31-48.
Elsayed M.A., Wakwak M.M. and Mahrose KH.M. (2010). Effect of pyridoxine injection in Japanese quail eggs on hatchability, performance and some of physiological parameters. J. Isot. Rad. Res. 1, 109-123.
Farahani Z., Taherianfard M. and Nazifi S. (2013). Exposure to acute and chronic ethanol in the developmental stage of chick can change the brain homocysteine and leptin. Biochem. Physiol. 2, 107-111.
Foye O.T., Uni Z. and Ferket P.R. (2006). Effect of in ovo feeding egg white protein, β-hydroxy-β-methylbutyrate and carbohydrates on glycogen status and neonatal growth of turkeys. Poult. Sci. 85, 1185-1192.
Geyra A., Uni Z. and Sklan D. (2001). The effect of fasting at different ages on growth and tissue dynamics in the small in testine of the young chick. Br. J. Nutr. 86, 53-61.
Gore A.B. and Qureshi M.A. (1997). Enhancement of humeral and cellular immunity by vitamin E after embryonic exposure. Poult. Sci. 76, 984-991.
Halevy O., Nadel Y., Barak M., Rozenboim I. and Sklan D. (2003). Early posthatch feeding stimulates satellite cell proliferation and skeletal muscle growth in turkey poults. J. Nutr. 133, 1376-1382.
Hill D. (2000). Embryo temperatures in multi-stage incubation. Avian. Poult. Biol. Rev. 8, 168-172.
Ibrahim N.S., Wakwak M.M. and Khalifa H.H. (2012). Effect of in ovo injection of some nutrients and vitamins upon improving hatchability and hatching performance of ostrich embryos. Egyptian Poult. Sci. 32, 981-994.
Kadam M.M., Bhanja S.K., Mandal A.B., Thakur R., Vasan P., Bhattacharya A. and Tyagi J.S. (2008). Effect of in ovo threonine supplementation on early growth, immunological responses and digestive enzyme activities in broiler chickens. Br. Poult. Sci. 49, 736-741.
Kelsey N., Berlin Lauren M., Cameron Meredith Gatt Robert R. and Miller Jr R.R. (2010). Reduced de novo synthesis of 5-methyltetrahydrofolate and reduced taurine levels in ethanol-treated chick brains. Comp. Biochem. Physiol. 152, 353-359.
Mahmoud U.T., Abdel-Rahman M.A. and Darwish M.H.A. (2013). The effect of Chinese propolis supplementation on Ross broiler performance and carcass characteristics. J. Adv. Vet. Res. 3, 154-160.
McDowell L.R. (1989). Vitamins in Animal Nutrition: Comparative Aspects of Human Nutrition. Academic Press, San Diego, California.
Miller R.R. (2004). Nutrition and Alcohol: Linking Nutrient Interactions and Dietary Intake. CRC Press, Boca Raton, Florida, USA.
Miller R.R., Taylor C.L., Spidle D.L., Ugolini A.M. and Nothdorf R.A. (1996). Ethanolinduced decreases in membrane longchain unsaturated fatty acids correlate with impaired chick brain development. Comp. Biochem. Physiol. 115, 465-474.
Miller R.R., Slater J.R. and Luvisotto M.L. (2000). α-tocopherol and γ-tocopherol attenuate ethanol-induced changes in membrane fatty acid composition in embryonic chick brains. Teratology. 62, 26-35.
Miller R.R., Olson B.M., Rorick N., Wittingen A.L. and Bullock M. (2003a). Embryonic exposure to exogenous α-tocopherol and γ-tocopherol partially attenuates ethanolinduced changes in brain morphology and brain membrane fatty acid composition. Nutr. Neurosci. 6, 201-413.
Miller R.R., Leanza C.M., Phillips E.E. and Blacquiere K.D. (2003b). Homocysteine-induced changes in brain membrane composition correlate with increased brain caspase-3 activities and reduced chick embryo viability. Comp. Biochem. Physiol. 136, 521-532.
Miller R.R., Hay C.M., Striegnitz T.R., Honsey L.E., Coykendale C.E. and Blacquire K.D. (2006). Exogenous glycine partially attenuates homocysteine-induced apoptosis and membrane peroxidation in chick embryos. Comp. Biochem. Physiol. 144, 25-33.
Miller R.R. (2011). Hyperglycemia-induced oxidative-stress, apoptosis, and embryopathy. J. Ped. Biochem. 1, 309-324.
Min H., Im E.U., Seo J.U., Mun J.A. and Buri B.J. (2005). Effects of chronic ethanol ingestion and folate deficiencies on the activity of 10-formyltetrahydrofolate dehydrogenase in rat liver. Alcohol. Clin. Exp. Res. 29, 2188-2193.
Moore D.T., Ferket P.R. and Mozdziak P.E. (2005). The effect of early nutrition on satellite cell dynamics in the young turkey. Poult. Sci. 84, 748-756.
Ohta Y., Tsushima N., Koide K., Kidd M.T. and Ishibashi T. (1999). Effect of amino acid injection in broiler breeder eggs on embryonic growth and hatchability of chicks. Poult. Sci. 78, 1493-1498.
Rajdl D., Racek J., Trefil L., Stehlik P., Dobra J. and BabuskaV. (2016). Effect of folic acid, betaine, vitamin B6 and vitamin B12 on homocysteine and dimethylglycine levels in middleaged men drinking white wine. J. Nutr. 8, 34-41.
Roman D.M., Ferket P.R. and Goncalves F.M. (2012). Oxidative stress protection of embryos by “in ovo” supplementation. Pp. 56-59 in Proc. Worlds Poult. Congr., Salvador, Bahia, Brazil.
Rosenquist T.H., Ratashak S.A. and Selhub J. (1996). Homocysteine induces congenital defects of the heart and neural tube, effect of folic acid. Proc. Natl Acad. Sci. USA. 93, 15227-15232.
Sajid M., Khan I.A., Ali S. and Akhtar N. (2007). Immunomodulatory effects of ethanol in broilers. J. Anim. Plant Sci. 17, 1-2.
Sakuto H. and Suzuki T. (2005). Alcohol consumption and plasma homocyteine. Alcohol. 37, 73-77.
Salami M., Salarmoini M. and Tasharrofi S. (2014). Effects of in-ovo injection of different nutrients on the hatchability and growth performance in broilers. J. Livest. Sci. Technol. 1, 1-7.
Salmanzadeh M., Ebrahimnezhad Y.H., Aghdam S. and Beheshti R. (2012). The effects of in ovo injection of glucose and magnesium in broiler breeder eggs on hatching traits, performance, carcass characteristics and blood parameters of broiler chickens. Arch. Geflugelkd. 76, 277-284.
Salmanzadeh M., Ebrahimnezhad Y., Shahryar H.A. and Ghiasi G.K.J. (2016). The effects of in ovo feeding of glutamine in broiler breeder eggs on hatchability, development of the gastrointestinal tract, growth performance and carcass characteristics of broiler chickens. Arch. Anim. Breed. 59, 235-242.
SAS Institute. (2008). SAS®/STAT Software, Release 9.2. SAS Institute, Inc., Cary, NC. USA.
Schall T.P. (2008). The effects of in ovo feeding of fatty acids and antioxidants on broiler chicken hatchability and chick tissue lipids. MS Thesis. Oregon State Univ., US.
Selhub J. (1999). Homocysteine metabolism. Ann. Rev. Nutr. 19, 217-246.
Sgavioli S., Domingues C.H.F., Santos E.T., Quadros T.C.O., Borges L.L., Garcia R.G., Louzada M.J.Q.L. and Boleli I.C. (2016). Effect of in ovo ascorbic acid injection on the bone development of broiler chickens submitted to heat stress during incubation and rearing. Brazilian J. Poult. Sci. 18, 153-162.
Surai P.F., Noble R.C. and Speake B.K. (1999). Relationship between vitamin E content and susceptibility. Br. Poult. Sci. 3, 406-410.
Svingen G.F.T., Uel P.M., Pedersen E.K.R., Schartum-Hansen H., Seifert R., Ebbing M., Loland K.H., Tell G.S. and Nygard O. (2013). Plasma dimethylglycine and risk of incident acute myocardial infarction in patients with stable angina pectoris. Arterioscler. Thromb. Vasc. Biol. 33, 2041-2048.
Taherianfard M., Nazifi S. and Farahani Z. (2013). The effects of acute and chronic exposure to ethanol on chicken brain homocysteine and leptin. Zahedan J. Res. Med. Sci. 2, 22-26.
Tako E., Ferket P.R. and Uni Z. (2004). Effects of in ovo feeding of carbohydrates and β-hydroxy-β-methylbutyrate on the development of chicken intestine. Poult. Sci. 83, 2023-2028.
Uni Z. and Ferket P.R. (2003). Enhancement of development of oviparous species by in ovo feeding. US Regular Patent. 6, 592.
Walcher B.N. and Miller Jr R.R. (2008). Ethanol-induced increased endogenous homocysteine levels and decreased ratios of SAM/SAH are only partially attenuated by exogenous glycine in developing chick brains. Comp. Biochem. Physiol. 147, 11-16.
Xu Y., Li Y., Tang Y., Wang J., Shen X., Long Z. and Zheng X. (2006). The maternal combined supplementation of folic acid and vitamin B12 suppresses ethanolinduced developmental toxicity in mouse fetuses. Reprod. Toxicol. 22, 56-61.