مقایسه مدلهای چندبخشی لجستیک و میکائیلیس-منتن برای بررسی تولید گاز در شرایط برونتنی از برخی خوراکهای نشاستهای
Subject Areas : Camelا. پرند 1 , ع.ر. وکیلی 2 , م. دانش مسگران 3
1 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
Keywords: تولید گاز, غلات, مدلهای چندبخشی,
Abstract :
در این پژوهش از دو مدل چندبخشی (لجستیک (LOG) و میکائیلیس–منتن (MM)) دارای سه زیر بخش به منظور بررسی کینتیک تولید گاز در خوراکهای دانه ذرت، دانه جو، دانه گندم و دانه تریتیکاله استفاده شد. در هر مدل زیربخش اول بیان کننده تولید گاز ناشی از تخمیر بخش محلول خوراکها، زیربخش دوم توضیح دهنده گاز حاصل از تخمیر بخش نامحلول خوراکها و زیربخش سوم نشان دهنده تولید گاز حاصل از ترن آور میکروبی است. با استفاده از مدل MM میزان تولید گاز از بخش محلول به ترتیب از بیشترین به کمترین برای دانههای تریتیکاله، گندم، ذرت و جو به دست آمد. با استفاده از مدل LOG در گاز حاصل از تخمیر بخش محلول تفاوتی بین دانههای جو و ذرت (05/0P>) و دانههای تریتیکاله و گندم (05/0P>) وجود نداشت اما تولید گاز حاصل از این بخش برای دانههای تریتیکاله و گندم بالاتر از دانههای جو و ذرت بود (05/0P<). برای تولید گاز ناشی از تخمیر بخش نامحلول دانه ذرت با استفاده از مدل MM بیشترین بود و تولید گاز ناشی از تخمیر بخش نامحلول برای دانههای ذرت و جو با استفاده از مدل LOG بیشتر از دانههای تریتیکاله و گندم بود (05/0P<). با استفاده از مدل MM، تولید گاز ناشی از ترن آور میکروبی برای دانه جو بیشترین بود در حالیکه تولید گاز در زیربخش سوم برای دانههای تریتیکاله و گندم با استفاده از مدل LOG بیشترین بود. در پژوهش حاضر نیکویی برازش برای مدل LOG کمی بهتر از مدل MM بود اما با در نظر گرفتن شرایط مطالعه حاضر این مطلب نمیتواند به طور قطع بیانگر توانایی بهتر مدل LOG در توضیح کینتیک تولید گاز از منابع نشاستهای در مقایسه با مدل MM باشد.
Agbagla-Dohnani A., Cornu A. and Broudiscou L. (2012). Rumen digestion of rice straw structural polysaccharides: Effect of ammonia treatment and lucerne extract supplementation in vitro. Animal. 6, 1642-1647.
Azarfar A. (2007). Fractions of ruminant feeds: Kinetics of degradation in vitro. Ph D. Thesis. Wageningen Institute of Animal Science, Wageningen Univ., the Netherlands.
Azarfar A., Namgay K., Pellikaan W.F., Tamminga S. and van der Poel A.F. (2009). In vitro gas production profiles and fermentation end products in processed barley, maize and milo. J. Sci. Food Agric. 89, 1697-1708.
Baldwin P.M. (2001). Starch granule associated proteins and polypeptides: A review. Starch Stärke. 53, 475-503.
Bibby J. and Toutenburg H. (1977). Prediction and improved estimation in linear models. Wiley and Sons, Chichester, New York.
Boon E., Engels F., Struik P. and Cone J. (2005). Stem characteristics of two forage maize (Zea mays). cultivars varying in whole plant digestibility. II. Relation between in vitro rumen fermentation characteristics and anatomical and chemical features within a single internode. NJAS Wagen. J. Llife Sci. 53, 87-109.
Calabrò S., Lopez S., Piccolo V., Dijkstra J., Dhanoa M. and France J. (2005). Comparative analysis of gas production profiles obtained with buffalo and sheep ruminal fluid as the source of inoculum. Anim. Feed Sci. Technol. 123, 51-65.
Cao B., Wang R., Yang H. and Jiang L. (2015). In situ ruminal degradation of phenolic acid, cellulose and hemicellulose in crop brans and husks differing in ferulic and p-coumaric acid patterns. J. Agric. Sci. 153, 1312-1320.
Chesson A. (2000). Feed characterization. Pp. 11-33 in Feed Evaluation Models. M.K. Theodorou, Ed.CAB International, Wallingford, United Kingdom.
Cone J.W. and Becker P.M. (2012). Fermentation kinetics and production of volatile fatty acids and microbial protein by starchy feedstuffs. Anim. Feed Sci. Technol. 172, 34-41.
Cone J.W., van Gelder A.H. and Driehuis F. (1997). Description of gas production profiles with a three-phasic model. Anim. Feed Sci. Technol. 66, 31-45.
Cornu A., Besle J., Mosoni P. and Grenet E. (1994). Lignin-carbohydrate complexes in forages: Structure and consequences in the ruminal degradation of cell-wall carbohydrates. Reprod. Nutr. Dev. 34, 385-398.
Demeyer D. (1981). Rumen microbes and digestion of plant cell walls. Agric. Environ. 6, 295-337.
Dhanoa M., Lister S., France J. and Barnes R. (1999). Use of mean square prediction error analysis and reproducibility measures to study near infrared calibration equation performance. J. Near Infrared Spectrosc. 7, 133-144.
Dhanoa M., Lopez S., Dijkstra J., Davies D., Sanderson R., Williams B., Sileshi Z. and France J. (2000). Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: Comparison of models. Br. J. Nutr. 83, 131-142.
Fellner V., Burns J. and Marshall D. (2008). Effect of feeding corn, hull-less or hulled barley on fermentation by mixed cultures of ruminal microorganisms. J. Dairy Sci. 91, 1936-1941.
Giuberti G., Gallo A., Masoero F., Ferraretto L.F., Hoffman P.C. and Shaver R.D. (2014). Factors affecting starch utilization in large animal food production system: A review. Starch Stärke. 66, 72-90.
Groot J.C., Cone J.W., Williams B.A., Debersaques F.M. and Lantinga E.A. (1996). Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 64, 77-89.
Hillman K., Newbold C. and Stewart C. (1993). The contributions of bacteria and protozoa to ruminal forage fermentation in vitro, as determined by microbial gas production. Anim. Feed Sci. Technol. 42, 193-208.
Hindle V., Klop A., Mathijssen Kamman A., Van Gelder A. and Cone J. (2005). Site and extent of starch degradation in the dairy cow–a comparison between in vivo, in situ and in vitro measurements. J. Anim. Physiol. Anim. Nutr. 89, 158-165.
Huhtanen P., Seppälä A., Ahvenjärvi S. and Rinne M. (2008). Prediction of in vivo neutral detergent fiber digestibility and digestion rate of potentially digestible neutral detergent fiber: Comparison of models. J. Anim. Sci. 86, 2657-2669.
Huws S., Mayorga O., Theodorou M., Kim E., Cookson A. and Newbold C. (2014). Differential colonization of plant parts by the rumen microbiota is likely to be due to different forage chemistries. J. Microb. Biochem. Technol. 6, 80-86.
Lanzas C., Fox D. and Pell A. (2007). Digestion kinetics of dried cereal grains. Anim. Feed Sci. Technol. 136, 265-280.
Lopes J., Shaver R., Hoffman P., Akins M., Bertics S., Gencoglu H. and Coors J. (2009). Type of corn endosperm influences nutrient digestibility in lactating dairy cows. J. Dairy Sci. 92, 4541-4548.
Lynd L.R., Weimer P.J., Van Zyl W.H. and Pretorius I.S. (2002). Microbial cellulose utilization: Fundamentals and biotech-nology. Microbiol. Mol. Biol. Rev. 66, 506-577.
McAllister T.A., Cheng K.J., Rode L.M. and Forsberg C.W. (1990). Digestion of barley, maize, and wheat by selected species of ruminal bacteria. Appl. Environ. Microbiol. 56, 3146-3153.
Menke K., Raab L., Salewski A., Steingass H., Fritz D. and Schneider W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 93, 217-722.
Nocek J.E. and Tamminga S. (1991). Site of digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk yield and composition. J. Dairy Sci. 74, 3598-3629.
Pell A.N., Pitt R.E., Doane P.H. and Schofield P. (1998). The development, use and application of the gas production technique at Cornell University, USA. Pp. 45-54 in Proc. In vitro Vechniques for Measuring Nutrient supply to Ruminants. E.R. Deaville, E. Owen, A.T. Adesogen, C. Rymer, J.A. Huntington and T.L.J. Lawrence, Ed. Occasional Publication, British Society of Animal Science, Edinburgh, United Kingdom.
Peripolli V., Prates E.R., Barcellos J.O., McManus C.M., Wilbert C.A., Neto J.B., Camargo C.M. and Lopes R.B. (2014). Models for gas production adjustment in ruminant diets containing crude glycerol. Livest. Res. Rural Dev. 26(2), 28-35.
Piquer O., Casado C., Biglia S., Fernández C., Blas E. and Pascual J. (2009). In vitro gas production kinetics of whole citrus fruits. J. Anim. Feed Sci. 663, 127-135.
Rymer C., Huntington J., Williams B. and Givens D. (2005). In vitro cumulative gas production techniques: History, methodological considerations and challenges. Anim. Feed Sci. Technol. 123, 19-30.
SAS Institute. (2001). SAS®/STAT Software, Release 8.2. SAS Institute, Inc., Cary, NC. USA.
Schofield P., Pitt R. and Pell A. (1994). Kinetics of fiber digestion from in vitro gas production. J. Anim Sci. 72, 2980-2991.
Sherrod P.H. (2005). Nonlinear Regression Analysis Program Phillip H. Sherrod Nashville, USA.
Shewry P.R. and Halford N.G. (2002). Cereal seed storage proteins: structures, properties and role in grain utilization. J. Exp. Bot. 53, 947-958.
Theodorou M.K., Davies D.R., Nielsen B.B., Lawrence M.I. and Trinci A.P. (1995). Determination of growth of anaerobic fungi on soluble and cellulosic substrates using a pressure transducer. Microbiology. 141, 671-678.
Van Milgen J., Berger L.L. and Murphy M.R. (1993). An integrated, dynamic model of feed hydration anddigestion, and subsequent bacterial mass accumulation in the rumen. Br. J. Nutr. 70, 471-483.
Wang M., Tang S.X. and Tan Z.L. (2011). Modeling in vitro gas production kinetics: Derivation of logistic-exponential (LE) equations and comparison of models. Anim. Feed Sci. Technol. 165, 137-150.
Yang H., Tamminga S., Williams B.A., Dijkstra J. and Boer H. (2005). In vitro gas and volatile fatty acids production profiles of barley and maize and their soluble and washout fractions after feed processing. Anim. Feed Sci. Technol. 120, 125-140.