چندشکلی ژنهای پرولاکتین و پروموتر پرولاکتین و ارتباط آن با Broodiness و وزن بدن در لاینهای جوجه اندونزیایی
Subject Areas : Camelا.ب.آی. پردامایان 1 , ب.س. داریونو 2
1 - Laboratory of Genetics and Breeding, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sleman 55281, Yogyakarta, Indonesia
2 - Laboratory of Genetics and Breeding, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sleman 55281, Yogyakarta, Indonesia
Keywords: مرغ گوشتی, پرولاکتین, RLFP, SSCP, پلانگ,
Abstract :
در دنیا مرغداری، جوجههای ماده انتخاب شده به عنوان هسته والدین باید عملکرد تخمگذاری عالی بدون broodiness نشان دهند خصوصیات مربوط به وزن بده را به فرزندان خود به ارث برسانند. پرولاکتین به طور گسترده به داشتن یک نقش مهم در شروع و نگهداری وقوع broodiness پذیرفته شده است. هدف از این مطالعه شناسایی یک نشانگر ژنتیکی ارزشمند برای مطالعه چندشکلی پرولاکتین (Prl) و پروموتر پرولاکتین (Prl-P) در لاینهای مرغ اندونزیایی با استفاده از دادههای ریختشناسی و مولکولی است. لاینهای مرغ آزمایشگاهی از سویه گوشتی (لاین مرغ بدون broodiness) و پلانگ (مرغ بومی اندونزیایی: لاین مرغ broodiness) با برنامه انتخابی برای پنج نسل تولید شدند. وقوع broodiness و وزن بدن هر نسل از لاینهای مرغ مشاهده شده و با لگهورن قهوهای به عنوان یک بدون broodiness خارج گروهی مقایسه شدند. وزن بدن مرغها هفتگی از زمان هچ تا سن 49 روزگی اندازهگیری شدند. دادههای مولکولی با استفاده از چندشکلی قطعات طولی قابل هضم (RFLP) و چندشکلی آرایش فضایی تک رشتهای (SSCP) بایگانی شدند. بعد از پنج نسل از انتخاب ژنتیکی، در روز 49، وزن بدن لاینهای مرغ آزمایشگاهی و نرخ رشد کاهش یافت، اگرچه وقوع رفتار broody کاهش داشت. آنالیز RFLP و SSCP نتوانست تفاوتی بین ژنوتیپ broody و غیر broody و وزن عالی تا ضعیف در هر نسل به دلیل پرایمر غیراختصاصی قائل شود. نتیجهگیری ما این است که broodiness یک صفت مغلوب است و میتواند توسط پرورش انتخابی محدود شود.
Alipanah M., Kamal S. and Hussein K.B. (2011). The polymorphism of prolactin gene in native chicken Zabol region. J. Anim. Vet. Adv. 10(5), 619-621.
Banu N., Rashid M.B., Hasan M.M., Aziz F.B., Islam M.R. and Haque M.A. (2017). Effect of anti-prolactin drug and peppermint on broodiness, laying performance and egg quality in indigenous hens. Asian J. Med. Biol. Res. 2, 547-557.
Bhattacharya T.K., Chatterjee R.N., Sharma R.P., Rajkumar U., Niranjan M. and Reddy B. (2011). Association of polymorphism in the prolactin promoter and egg quality traits in laying hens. British Poult. Sci. 52(5), 551-557.
Brooks C.L. (2012). Molecular mechanisms of prolactin and its receptor. Endocr. Rev. 33(4), 504-525.
Christie M.R., Marine M.L., French R.A. and Blouin M.S. (2012). Genetic adaptation to captivity can occur in a single generation. Proc. Natl. Acad. Sci. 109(1), 238-242.
Costanza M., Binart N., Steinman L. and Pedotti R. (2015). Prolactin: A versatile regulator of inflammation and autoimmune pathology. Autoimmun. Rev. 14(3), 223-230.
Cui J.X. Du H.L., Liang Y., Deng X.M., Li N. and Zhang X.Q. (2006). Association of polymorphisms in the promoter region of chicken prolactin with egg production. Poult. Sci. 27, 208-214.
Daryono B.S., Roosdianto I. and Saragih H.T.S. (2016). Pewarisan karakter fenotip Ayam hasil persilangan Ayam pelung dengan ayam cemani phnotypical characters in hybrids chicken of crossbreeds between pelung and cemani. J. Veteriner. 11(4), 257-263.
Dharmayanthi A.B., Terai Y., Sulandari S., Zein M., Arifin S., Akiyama T. and Satta Y. (2017). The origin and evolution of fibromelanosis in domesticated chickens: Genomic comparison of Indonesian cemani and chinese silkie breeds. PLoS One. 12(4), 1-24.
Eltayeb N.M., Wani C.E. and Yousif I.A. (2010). Assessment of broodiness and its influence on production performance and plasma prolactin level in native chicken of the Sudan. Asian J. Poult. Sci. 4, 1-6.
Fathi M. and Tabriz T., Zarringhobaie E. and Ghorban. (2014). Association of polymorphisms in the promoter region of turkey prolactin with egg performance. Genetika. 46(2), 591-599.
Fuller M.F. (2009). The Encyclopedia of Farm Animal Nutrition. Rowett Research Institute, Aberdeen, United Kingdom.
Fumihito A., Miyake T., Sumi S., Takada M., Ohno S. and Kondo N. (1994). One subspecies of the Red Junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proc. Natl. Acad. Sci. USA. 91, 12505-12509.
Geng A.L., Xu S.F., Zhang Y., Zhang J., Chu Q. and Liu H.G. (2014). Effects of photoperiod on broodiness, egg-laying and endocrine responses in native laying hens. British Poult. Sci. 55(2), 264-269.
Iskandar S. and Susanti T. (2007). Karakter dan manfaat Ayam pelung di Indonesia. Wartazoa. 17(3), 128-135.
Jiang R.S., Zhang L.L., Geng Z.Y., Yang T. and Zhang S.S. (2009). Single nucleotide polymorphisms in the 5’-flanking region of the prolactin gene and the association with reproduction traits in geese. South African J. Anim. Sci. 39, 83-87.
Kalvatchev Z. and Draganov P. (2005). Single-strand conformation polymorphism (SSCP) analysis: A rapid and sensitive method for detection of genetic diversity among virus population. Biotechnol. Biotechnol.Equip. 3, 9-14.
Kulibaba R.A. (2015). Polymorphism of growth hormone, growth hormone receptor, prolactin and prolactin receptor genes in connection with egg production in poltava clay chicken. Sel Skokhozyaistven. Biol. 50(2), 198-207.
Li H.F., Shu J.T., Du Y.F., Shan Y.J., Chen K.W., Zhang X.Y., Han W. and Xu W.J. (2013). Analysis of the genetic effects of prolactin gene polymorphisms on chicken egg production. Mol. Biol. Rep. 40, 289-294.
Mazurowski A., Mazurowski A., Frieske A., Wilkanowska A., Kokoszyński D., Mroczkowski S., Bernacki Z. and Maiorano G.(2016). Polymorphism of prolactin gene and its association with growth and some biometrical traits in ducks. Italian J. Anim. Sci. 15(2), 200-206.
Okeno T.O., Alexander K.K. and Kurt J.P. (2012). Genetic and economic evaluation of alternative breeding objectives for adoption in the smallholder Indigenous chicken improvement program. Pp. 1-4 in Proc. Conf. Int. Res. Food Secur., Hambur, Germany.
Panetto J.C.C., Gutiérrez J.P., Ferraz J.B.S., Cunha D.G. and Golden B.L. (2010). Assessment of inbreeding depression in a Guzerat dairy herd: Effects of individual increase in inbreeding coefficients on production and reproduction. J. Dairy Sci. 93(10), 4902-4912.
Patnala R., Judith C. and Jyotsna B. (2013). Candidate gene association studies: A comprehensive guide to useful in silico tools. BMC Genet. 14, 39-45.
Perdamaian A.B.I., Saragih H.T.S.S.G. and Daryono B.S. (2017). Effect of varying level of crude protein and energy on insulin-like growth factor-i expression level in Indonesian hybrid chicken. Int. J. Poult. Sci. 16(1), 1-5.
Puspita U.E., Utomo R.T., Perdamaian A.B.I., Lesmana I., Arijuddin H., Erwanto Y., Daryono B.S. and Saragih H.T.S.G. (2016). Effect of varying levels of protein and energy in pre-stater feeds on pectoralis muscle development of kampung super chicks (Gallus gallus gallus). Asian J. Anim. Vet. Adv. 12(1), 31-37.
Rashidi H., Ghodrat R.M., Farhadi A. and Gholizadeh M. (2012). Association of prolactin and prolactin receptor gene polymorphisms with economic traits in breeder hens of indigenous chickens of Mazandaran province. Iranian J. Biotechnol. 10(2), 129-135.
Retnoaji B., Wulandari R., Nurhidayat L. and Daryono B.S. (2016). Osteogenesis study of hybrids of indonesia’s native chicken pelung (Gallus gallus domesticus) with broiler (Gallus gallus domesticus). Asian J. Anim. Vet. Adv. 11(8), 498-504.
Romanov M.N., Talbot R.T., Wilson P.W. and Sharp P.J. (2002). Genetic control of incubation behavior in the domestic hen. Poult. Sci. 81(7), 928-931.
Sangeeta Devi Y. and Halperin J. (2014). Reproductive actions of prolactin mediated through short and long receptor isoforms. Mol. Cell. Endocrinol. 382(1), 400-410.
Saragih H.T.S.S.G. and Daryono B.S. (2016). Histological study on the pancreatic beta -cell number of indigenous chicks in first crossbred (F1). J. Indonesian Trop. Anim. Agric. 35(3), 201-205.
Saragih H.T.S.S.G., Utomo R.T., Perdamaian A.B.I., Puspita U.E., Lesmana I. Arijuddin H., Erwanto Y.and Daryono B.S. (2016). The effect of early posthatch local feed in pectoralis muscle of jawa super chicks (Gallus gallus domesticus). AIP Conf. Proc. 1755(1), 1-6.
Seale A.P., Yamaguchi Y., Johnstone W.M., Borski R.J., Lerner D.T. and Grau E.G. (2013). Endocrine regulation of prolactin cell function and modulation of osmoreception in the Mozambique tilapia. Gen. Comp. Endocrinol. 192, 191-203.
SPSS Inc. (2011). Statistical Package for Social Sciences Study. SPSS for Windows, Version 20. Chicago SPSS Inc., USA.
Sulandari S., Zein M.S.A. and Sartika T. (2017). Molecular characterization of Indonesian indigenous chickens based on mitochondrial DNA displacement (D)-loop sequences. Hayati J. Biosci. 15(4), 145-154.
Tixier-Boichard M., Boulliou-Robic A., Morisson M., Coquerelle G., Horst P. and Benkel B. (1997). A deleted retroviral insertion at the Ev21-K complex locus in Indonesian chickens. Poult. Sci. 76(5), 733-742.
Ulfah M., Kawahara-Miki R., Farajalllah A., Muladno M., Dorshorst B., Martin A. and Kono T. (2016). Genetic features of red and green junglefowls and relationship with Indonesian native chickens sumatera and kedu hitam. BMC Genom. 17(1), 320-328.
Utama I.V., Perdamaian A.B.I. and Daryono B.S. (2018). Plumage uniformity, growth rate and growth hormone polymorphism in Indonesian hybrid chickens. Int. J. Poult. Sci. 17(10), 486-492.
Watahiki M., Tanaka M., Masuda N., Sugisaki K., Yamamoto M., Yamakawa M., Nagai J and Nakashima K. (1989). Primary structure of chicken pituitary prolactin deduced from the CDNA sequence. Conserved and specific amino acid residues in the domains of the prolactins. J. Biol. Chem. 264(10), 5535-5539.
Zerehdaran S., Vereijken A.L.J., Van Arendonk J.A.M. and Van Der Waaij E.H. (2004). Estimation of genetic parameters for fat deposition and carcass traits in broilers. Poult. Sci. 83(4), 521-525.