Performance of Ni, Pt, and Pd Monometal and Ni-Pt Bimetal onto Activated Carbon for Hydrocracking of Castor Oil
Subject Areas : Iranian Journal of CatalysisWega Trisunaryanti 1 , Iip Falah 2 , Siti Nasi’ah 3 , Satriyo Sumbogo 4
1 - Department of Chemistry, Faculty of Mathematics and Natural Science, University Gadjah Mada, Yogyakarta, Indonesia
2 - Department of Chemistry, Faculty of Mathematics and Natural Science, University Gadjah Mada, Yogyakarta, Indonesia
3 - Department of Chemistry, Faculty of Mathematics and Natural Science, University Gadjah Mada, Yogyakarta, Indonesia
4 - Department of Chemistry, Faculty of Mathematics and Natural Science, University Gadjah Mada, Yogyakarta, Indonesia
Keywords:
Abstract :
[1] Attaphaiboon, W., Neramittagapong, A., Neramittagapong, S., & Theerakulpisut, S. Potential of vegetable oils for producing green diesel via hydrocracking process. Thai Environ. Eng. J., 35(2), (2021). 1-11.
[2] El-Sawy, M. S., Hanafi, S. A., Ashour, F., & Aboul-Fotouh, T. M. Co-hydroprocessing and hydrocracking of alternative feed mixture (vacuum gas oil/waste lubricating oil/waste cooking oil) with the aim of producing high quality fuels. Fuel, 269, (2020). 117437.
[3] Mederos-Nieto, F. S., Elizalde-Martínez, I., Trejo-Zárraga, F., Hernández-Altamirano, R., & Alonso-Martínez, F. Dynamic modeling and simulation of three-phase reactors for hydrocracking of vegetable oils. Reaction Kinetics, Mechanisms and Catalysis, 131, (2020). 613-644.
[4] Al Muttaqii, M., Kurniawansyah, F., Prajitno, D. H., & Roesyadi, A. Hydrocracking process of coconut oil using Ni-Zn/HZSM-5 catalyst for hydrocarbon biofuel production. In Journal of Physics: Conference Series 1725 (1) (2021) 012008. IOP Publishing.
[5] Liu, J., Li, Y., He, J., Wang, L., Lei, J., & Rong, L. Ni-based non-sulfided inexpensive catalysts for hydrocracking/Hydrotreating of Jatropha oil. Mini-Rev. Org. Chem., 17(2), (2020). 141-147.
[6] Li, Z., Yang, X., Han, Y., & Rong, L. Hydrocracking of Jatropha oil to aromatic compounds over the LaNiMo/ZSM-5 catalyst. Inter. J. Hydrogen Ener, 45(41), (2020). 21364-21379.
[7] Kartika, I. A., Sumbogo, S. D., Fataya, I., Trisunaryanti, W., & Sailah, I. (2022, June). Optimization of Calophyllum oil extraction and its application for biogasoline. In IOP Conference Series: Earth and Environmental Science (Vol. 1034, No. 1, p. 012035). IOP Publishing.
[8] Trisunaryanti, W., Sumbogo, S. D., Mukti, R. R., Kartika, I. A., Hartati, & Triyono. Performance of low-content Pd and high-content Co, Ni supported on hierarchical activated carbon for the hydrotreatment of Calophyllum inophyllum oil (CIO). Reaction Kinetics, Mechan. Catal. 134, (2021). 259-272.
[9] Trisunaryanti, W., Mukti, R. R., Kartika, I. A., Firda, P. B. D., Sumbogo, S. D., Prasetyoko, D., & Bahruji, H. Highly selective hierarchical ZSM-5 from kaolin for catalytic cracking of Calophyllum inophyllum oil to biofuel. J. Energy Inst., 93(6), (2020). 2238-2246.
[10] Sihombing, J. L., Gea, S., Wirjosentono, B., Agusnar, H., Pulungan, A. N., Herlinawati, H., Yusuf, M., & Hutapea, Y. A. Characteristic and catalytic performance of Co and Co-Mo metal impregnated in sarulla natural zeolite catalyst for hydrocracking of MEFA rubber seed oil into biogasoline fraction. Catalysts, 10(1), (2020). 121.
[11] Singh, S., Sharma, S., Sarma, S. J., & Brar, S. K. A comprehensive review of castor oil‐derived renewable and sustainable industrial products. Environ. Progress Sustain. Energ., 42(2), (2023).e14008.
[12] Chauke, N. P., Mukaya, H. E., & Nkazi, D. B. Chemical modifications of castor oil: A review. Science Progress, 102(3), (2019).199-217.
[13] Yeboah, A., Ying, S., Lu, J., Xie, Y., Amoanimaa-Dede, H., Boateng, K. G. A., Chen, M., & Yin, X. Castor oil (Ricinus communis): a review on the chemical composition and physicochemical properties. Food Sci. Tech., 41, (2020). 399-413.
[14] Meller, E., Gutkin, V., Aizenshtat, Z., & Sasson, Y. Catalytic hydrocracking‐hydrogenation of castor oil fatty acid methyl esters over nickel substituted polyoxometalate catalyst. ChemistrySelect, 1(20), (2016)6396-6405.
[15] Trisunaryanti, W., Triyono, T., Purwono, S., Purwanti, A. S., & Sumbogo, S. D. Synthesis of mesoporous carbon from merbau sawdust as a nickel metal catalyst support for castor oil hydrocracking. Bullet. Chem. Reaction Eng. Catal., 17(1), (2022). 216-224.
[16] Wijaya, K., Syoufian, A., Fitroturokhmah, A., Trisunaryanti, W., Adi Saputra, D., & Hasanudin. Chrom/nanocomposite ZrO2-pillared bentonite catalyst for castor oil (ricinus communis) hydrocracking. Nano Hybrids and Composites, 27, (2019)31-37.
[17] Rorrer, J. E., Ebrahim, A. M., Questell-Santiago, Y., Zhu, J., Troyano-Valls, C., Asundi, A. S., Brenner, A.E., Bare, S.R., Tassone, T.J., Beckham, G.T., & Roman-Leshkov, Y. Role of Bifunctional Ru/Acid Catalysts in the Selective Hydrocracking of Polyethylene and Polypropylene Waste to Liquid Hydrocarbons. ACS Catal., 12(22), (2022). 13969-13979.
[18] Ma, Y., Liang, R., Wu, W., Zhang, J., Cao, Y., Huang, K., & Jiang, L. Enhancing the activity of MoS2/SiO2-Al2O3 bifunctional catalysts for suspended-bed hydrocracking of heavy oils by doping with Zr atoms. Chin. J. Chem. Eng., 39, (2021). 126-134.
[19] Tedstone, A. A., Bin Jumah, A., Asuquo, E., & Garforth, A. A. Transition metal chalcogenide bifunctional catalysts for chemical recycling by plastic hydrocracking: a single-source precursor approach. Royal Society Open Science, 9(3), (2022), 211353.
[20] Trisunaryanti, W., Larasati, S., Bahri, S., lailun Ni’mah, Y., Efiyanti, L., Amri, K., Nuryanto, R., & Sumbogo, S. D. Performance comparison of Ni-Fe loaded on NH2-functionalized mesoporous silica and beach sand in the hydrotreatment of waste palm cooking oil. J. Environ. Chem. Eng., 8(6), (2020).104477.
[21] Utami, M., Wijaya, K., & Trisunaryanti, W. Pt-promoted sulfated zirconia as catalyst for hydrocracking of LDPE plastic waste into liquid fuels. Mater. Chem. Physic., 213, (2018)548-555.
[22] Kusumastuti, H., Trisunaryanti, W., Falah, I. I., & Marsuki, M. F. Synthesis of mesoporous silica-alumina from lapindo mud as a support of Ni and Mo metals catalysts for hydrocracking of pyrolyzed α-cellulose. Rasayan J Chem, 11(2), (2018), 522-530.
[23] Saab, R., Polychronopoulou, K., Anjum, D. H., Charisiou, N., Goula, M. A., Hinder, S. J., Baker, M.A., & Schiffer, A.. Carbon Nanostructure/Zeolite Y Composites as Supports for Monometallic and Bimetallic Hydrocracking Catalysts. Nanomater., 12(18), (2022)3246.
[24] Jeon, S. G., Na, J. G., Ko, C. H., Yi, K. B., Rho, N. S., & Park, S. B.. Preparation and application of an oil-soluble CoMo bimetallic catalyst for the hydrocracking of oil sands bitumen. Energy & Fuels, 25(10), (2011), 4256-4260.
[25] Kostyniuk, A., Bajec, D., & Likozar, B. Hydrocracking, hydrogenation and isomerization of model biomass tar in a packed bed reactor over bimetallic NiMo zeolite catalysts: Tailoring structure/acidity. Applied Catalysis A: General, 612, (2021)118004.
[26] Trisunaryanti, W., Suarsih, E., & Falah, I. I. Well-dispersed nickel nanoparticles on the external and internal surfaces of SBA-15 for hydrocracking of pyrolyzed α-cellulose. RSC adv., 9(3), (2019). 1230-1237.
[27] Heidarinejad, Z., Dehghani, M. H., Heidari, M., Javedan, G., Ali, I., & Sillanpää, M. Methods for preparation and activation of activated carbon: a review. Environ. Chem. Lett., 18, (2020) 393-415.
[28] Yahya, M. A., Al-Qodah, Z., & Ngah, C. Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and sustainable energy reviews, 46, (2015) 218-235.
[29] Santi, D., Trisunaryanti, W., & Falah, I. I. (2022, March). NiO Supported on Porous Carbon From Merbau Wood: Synthesis and Characterization. In IOP Conference Series: Materials Science and Engineering (Vol. 1232, No. 1, p. 012001). IOP Publishing.
[30] Žula, M., Grilc, M., & Likozar, B. Hydrocracking, hydrogenation and hydro-deoxygenation of fatty acids, esters and glycerides: Mechanisms, kinetics and transport phenomena. Chemical Engineering Journal, 444, (2022), 136564.
[31] Marlinda, L., Al-Muttaqii, M., Roesyadi, A., & Prajitno, D. H. (2017, May). Formation of hydrocarbon compounds during the hydrocracking of non-edible vegetable oils with cobalt-nickel supported on hierarchical HZSM-5 catalyst. In IOP Conference Series: Earth and Environmental Science (Vol. 67, No. 1, p. 012022). IOP Publishing.
[32] Al Muttaqii, M., Marlinda, L., Roesyadi, A., & Prajitno, D. H. Co-Ni/HZSM-5 catalyst for hydrocracking of Sunan candlenut oil (Reutealis trisperma (Blanco) airy shaw) for production of biofuel. J. Pure Applied Chem. Res., 6(2), (2017) 84.
[33] Cheng, J., Zhang, Z., Zhang, X., Liu, J., Zhou, J., Cen, K. Hydrodeoxygenation and hydrocracking of microalgae biodiesel to produce jet biofuel over H3PW12O40-Ni/hierarchical mesoporous zeolite Y catalyst. Fuel, 245, (2019) 384-391.
[34] Yi, H., Nakabayashi, K., Yoon, S. H., & Miyawaki, J. Pressurized physical activation: A simple production method for activated carbon with a highly developed pore structure. Carbon, 183, (2021) 735-742.
[35] Ding, Y., Qi, J., Hou, R., Liu, B., Yao, S., Lang, J. & Yang, B. Preparation of high-performance hierarchical porous activated carbon via a multistep physical activation method for supercapacitors. Energy & Fuels, 36(10), (2022) 5456-5464.
[36] Gao, Y., Yue, Q., Gao, B., & Li, A.. Insight into activated carbon from different kinds of chemical activating agents: A review. Sci. Total Env., 746, (2020)141094.
[37] Gayathiri, M., Pulingam, T., Lee, K. T., & Sudesh, K. Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere, 294, (2022). 133764.
[38] Mariana, M., HPS, A. K., Mistar, E. M., Yahya, E. B., Alfatah, T., Danish, M., & Amayreh, M.. Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. J. Water Process Eng., 43, (2021) 102221.
[39] Saleem, J., Shahid, U. B., Hijab, M., Mackey, H., & McKay, G.. Production and applications of activated carbons as adsorbents from olive stones. Biomass Conver. Bioref., 9, (2019) 775-802.
[40] Mopoung, S., Moonsri, P., Palas, W., & Khumpai, S. (2015). Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe (III) adsorption from aqueous solution. The scientific world journal, 2015.