The use of recyclable magnetic nanocatalyst Fe3O4@SiO2-(CH2)3-Pyridine-2-(1H)-tetrazole-Cu(II) in the synthesis of bis-coumarin derivatives under green conditions
Subject Areas : Iranian Journal of CatalysisAli Oji Moghanlou 1 , Mohammadali Pourshahi 2 , Siamak Atabak 3 , Nayer Mohammadian Tarighi 4
1 - Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran, 56157-31567
2 - Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran, 56157-31567
3 - Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran, 56157-31567
4 - Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran, 56157-31567
Keywords:
Abstract :
[1] Y. Wang, X. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry, Angew. Chem. Inter. Edit., 51 (2012) 68-89.
[2] M. Ghobadi, M. Kargar Razi, R. Javahershenas, M. Kazemi, Nanomagnetic reusable catalysts in organic synthesis, Synth. Commun., 51 (2021) 647-669.
[3] W. Wu, Q. He, C. Jiang, Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies, Nanoscale Res. Lett., 3 (2008) 397.
[4] A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26 (2005) 3995-4021.
[5] C. Klein, Hurlburt jr. CS “Manual of Mineralogy”, in, New York, John Wiley and Sons, Inc, 1993.
[6] S. Shylesh, V. Schünemann, W.R. Thiel, Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis, Angew. Chem. Inter. Edit., 49 (2010) 3428-3459.
[7] A.S. Arbab, L.A. Bashaw, B.R. Miller, E.K. Jordan, B.K. Lewis, H. Kalish, J.A. Frank, Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging, Radiology, 229 (2003) 838-846.
[8] P. Reimer, R. Weissleder, [Development and experimental use of receptor-specific MR contrast media], Der Radiologe, 36 (1996) 153-163.
[9] M. Esmaeilpour, A.R. Sardarian, J. Javidi, Synthesis and characterization of Schiff base complex of Pd (II) supported on superparamagnetic Fe3O4@ SiO2 nanoparticles and its application as an efficient copper-and phosphine ligand-free recyclable catalyst for Sonogashira–Hagihara coupling reactions, J. Organometal. Chem., 749 (2014) 233-240.
[10] M. Esmaeilpour, J. Javidi, F.N. Dodeji, M.M. Abarghoui, Facile synthesis of 1-and 5-substituted 1H-tetrazoles catalyzed by recyclable ligand complex of copper (II) supported on superparamagnetic Fe3O4@ SiO2 nanoparticles, J. Mol. Catal. A: Chem., 393 (2014) 18-29.
[11] M. Sarkheil, M. Lashanizadegan, M. Ghiasi, High catalytic activity of magnetic Fe3O4@ SiO2-Schiff base-Co (II) nanocatalyst for aerobic oxidation of alkenes and alcohols and DFT study, J. Mol. Struct., 1179 (2019) 278-288.
[12] M. Rezaei, K. Azizi, K. Amani, Copper–birhodanine complex immobilized on Fe3O4 nanoparticles: DFT studies and heterogeneous catalytic applications in the synthesis of propargylamines in aqueous medium, Appl. Organometal. Chem., 32 (2018) e4120.
[13] L. Vahabi, P.R. Ranjbar, F. Davar, Cladosporium protease/doxorubicin decorated Fe3O4@ SiO2 nanocomposite: An efficient nanoparticle for drug delivery and combating breast cancer, J. Drug Deliv. Sci. Tech., 80 (2023) 104144.
[14] A.-H. Lu, E.L. Salabas, F. Schüth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angew. Chem. Inter. Edit., 46 (2007) 1222-1244.
[15] G. Huang, C.-H. Lu, H.-H. Yang, Chapter 3 - Magnetic Nanomaterials for Magnetic Bioanalysis, in: X. Wang, X. Chen (Eds.) Novel Nanomaterials for Biomedical, Environmental and Energy Applications, Elsevier, 2019, pp. 89-109.
[16] G. Gnanaprakash, S. Mahadevan, T. Jayakumar, P. Kalyanasundaram, J. Philip, B. Raj, Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles, Mater. Chem. Physic., 103 (2007) 168-175.
[17] A. Khalid, R. Ahmed, M. Taha, T. Soliman, Fe3O4 nanoparticles and Fe3O4@ SiO2 core-shell: synthesize, structural, morphological, linear, and nonlinear optical properties, J. Alloy. Comp., 947 (2023) 169639.
[18] B.K. Paul, S.P. Moulik, Uses and applications of microemulsions, Current Science, 80 (2001) 990-1001.
[19] C. Graf, D.L. Vossen, A. Imhof, A. van Blaaderen, A general method to coat colloidal particles with silica, Langmuir, 19 (2003) 6693-6700.
[20] M. Mohapatra, S. Anand, Synthesis and applications of nano-structured iron oxides/hydroxides–a review, International J. Eng., Sci. Tech., 2 (2010).
[21] S. Giri, S. Samanta, S. Maji, S. Ganguli, A. Bhaumik, Magnetic properties of α-Fe2O3 nanoparticle synthesized by a new hydrothermal method, J. Magnet. Magnet. Mater, 285 (2005) 296-302.
[22] Z. Jing, S. Wu, Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach, Mater. Lett., 58 (2004) 3637-3640.
[23] D. Wang, D. Astruc, Fast-Growing Field of Magnetically Recyclable Nanocatalysts, Chem. Rev., 114 (2014) 6949-6985.
[24] Z. Du, W. Zhou, L. Bai, F. Wang, J.-X. Wang, In Situ Generation of Palladium Nanoparticles: Reusable, Ligand-Free Heck Reaction in PEG-400 Assisted by Focused Microwave Irradiation, Synlett, 2011 (2011) 369-372.
[25] B.B. Shaik, N.K. Katari, P. Seboletswe, R. Gundla, N.D. Kushwaha, V. Kumar, P. Singh, R. Karpoormath, M.D. Bala, Recent Literature Review on Coumarin Hybrids as Potential Anticancer Agents, Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 23 (2023) 142-163.
[26] P. Teli, A. Sethiya, S. Agarwal, An insight view on synthetic protocol, mechanistic and biological aspects of biscoumarin derivatives, ChemistrySelect, 4 (2019) 13772-13787.
[27] S. Zeinali, L.Z. Fekri, M. Nikpassand, R.S. Varma, Greener Syntheses of Coumarin Derivatives Using Magnetic Nanocatalysts: Recent Advances, Topics in Current Chemistry, 381 (2023) 1.
[28] F. Borges, F. Roleira, N. Milhazes, L. Santana, E. Uriarte, Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity, Current medicinal chemistry, 12 (2005) 887-916.
[29] N.O. Mahmoodi, F. Ghanbari Pirbasti, Z. Jalalifard, Recent advances in the synthesis of biscoumarin derivatives, J. Chin. Chem. Soc., 65 (2018) 383-394.
[30] K. Parvanak Boroujeni, P. Ghasemi, Z. Rafienia, Synthesis of biscoumarin derivatives using poly (4-vinylpyridine)-supported dual acidic ionic liquid as a heterogeneous catalyst, Monatshefte für Chemie-Chemical Monthly, 145 (2014) 1023-1026.
[31] D.S. Reddy, M. Kongot, V. Singh, M.A. Siddiquee, R. Patel, N.K. Singhal, F. Avecilla, A. Kumar, Biscoumarin–pyrimidine conjugates as potent anticancer agents and binding mechanism of hit candidate with human serum albumin, Archiv der Pharmazie, 354 (2021) 2000181.
[32] N.O. Mahmoodi, Z. Jalalifard, G.P. Fathanbari, Green synthesis of bis‐coumarin derivatives using Fe (SD) 3 as a catalyst and investigation of their biological activities, J. Chin. Chem. Soc., 67 (2020) 172-182.
[33] M. Faisal, F.A. Larik, A. Saeed, A highly promising approach for the one-pot synthesis of biscoumarins using HY zeolite as recyclable and green catalyst, J. Porous Mater., 26 (2019) 455-466.
[34] P. Li, R. Su, D. Zhang, M. Han, Y. Zhao, L. Ma, H. Zhang, T. Yu, Carbazole-functionalized V-shaped bis-coumarin derivatives as organic luminescent materials, Synthetic Metals, 287 (2022) 117069.
[35] T. Schalekamp, B.P. Brassé, J.F. Roijers, Y. Chahid, J.H. van Geest‐Daalderop, H. de Vries‐Goldschmeding, E.M. van Wijk, A.C. Egberts, A. de Boer, VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation, Clinical Pharmacology & Therapeutics, 80 (2006) 13-22.
[36] E. Zarenezhad, M.N. Montazer, M. Tabatabaee, C. Irajie, A. Iraji, New solid phase methodology for the synthesis of biscoumarin derivatives: experimental and in silico approaches, BMC Chemistry, 16 (2022) 53.
[37] W.L.F. Armarego, C.L.L. Chai, Purification of laboratory chemicals, 5th ed., Butterworth-Heinemann, Burlington, 2003.
[38] Y. Mansoori, B. Koohi-Zargar, H. Shekaari, M.R. Zamanloo, G.H. Imanzadeh, Polyamides with pendant 1,3,4-oxadiazole and pyridine moieties, Chin. J. Polymer Sci., 30 (2012) 112-121.
[39] L. Ciccotti, L.A.S. do Vale, T.L.R. Hewer, R.S. Freire, Fe3O4@TiO2 preparation and catalytic activity in heterogeneous photocatalytic and ozonation processes, Catal. Sci. Tech., 5 (2015) 1143-1152.
[40] S. Wang, K. Wang, C. Dai, H. Shi, J. Li, Adsorption of Pb2+ on amino-functionalized core–shell magnetic mesoporous SBA-15 silica composite, Chem. Eng. J., 262 (2015) 897-903.
[41] M. Nasrollahzadeh, Z. Issaabadi, S.M. Sajadi, Fe 3 O 4@ SiO 2 nanoparticle supported ionic liquid for green synthesis of antibacterially active 1-carbamoyl-1-phenylureas in water, RSC adv., 8 (2018) 27631-27644.
[42] H. Mehrabi, H. Abusaidi, Synthesis of biscoumarin and 3, 4-dihydropyrano [c] chromene derivatives catalysed by sodium dodecyl sulfate (SDS) in neat water, J. Iran. Chem. Soc., 7 (2010) 890-894.
[43] P. Teli, A. Sethiya, S. Agarwal, Black yet green: A heterogenous carbon-based acid catalyst for the synthesis of biscyclic derivatives under eco-friendly conditions, Res. Chem. Intermed., 48 (2022) 731-750.
[44] A. Shamsaddini, E. Sheikhhosseini, Synthesis of 3, 3-arylidene bis (4-hydroxycoumarin) catalyzed by p-dodecylbenzenesulfonic acid (DBSA) in aqueous media and microwave irradiation, Inter. J. Org. Chem., 4 (2014) 135-141.
[45] A.D. Gupta, S. Samanta, R. Mondal, A.K. Mallik, A Convenient, Eco-friendly, and Efficient Method for Synthesis of 3, 3'-Arylmethylene-bis-4-hydroxycoumarins, Bullet. Korean Chem. Soc., 33 (2012) 4239-4242.
[46] N. Iravani, M. Keshavarz, M. Mousavi, M. Baghernejad, Melamine trisulfonic acid: An efficient and recyclable solid acid catalyst for the green synthesis of Biscoumarin derivatives, Iran. J. Catal., 5 (2015) 65-71.
[47] S. Zahiri, M. Mokhtary, Bi (NO3) 3· 5H2O: An efficient catalyst for one-pot synthesis of 3-((aryl)(diethylamino) methyl)-4-hydroxy-2H-chromen-2-ones and biscoumarin derivatives, J. Taibah Uni. Sci., 9 (2015) 89-94.
[48] Z. Zare-Akbari, L. Edjali, M. Eshaghi, Synthesis of Novel Bis-Coumarin Derivatives as Potential Acetylcholinesterase Inhibitors: An In Vitro, Molecular Docking, and Molecular Dynamics Simulations Study, Pharmaceutical and Biomedical Research, 8 (2022) 131-142.
[49] Z.M. Mohammadi, N. Mahmoodi, Nano TiO2@ KSF as a high-efficient catalyst for solvent-free synthesis of Biscoumarin derivatives, Int. J. Nano Dimens 7(2) (2016) 174-180.
[50] B. Kharrngi, E.D. Dhar, G. Basumatary, D. Das, R.C. Deka, A.K. Yadav, G. Bez, Developing a highly potent anthelmintic: study of catalytic application of l-proline derived aminothiourea in rapid synthesis of biscoumarins and their in vitro anthelmintic essay, J. Chem. Sci., 133 (2021) 16.
[51] J. Albadi, A. Mansournezhad, S. Salehnasab, Green synthesis of biscoumarin derivatives catalyzed by recyclable CuO–CeO2 nanocomposite catalyst in water, Res. Chem. Intermed., 41 (2015) 5713-5721.