Mini-Review on Graphene Quantum Dots as an electro-catalyst in fuel cell
Subject Areas : Iranian Journal of CatalysisBita Roshanravan 1 , Habibollah Younesi 2
1 - Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, Iran
2 - Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, Iran
Keywords:
Abstract :
[1] M. Armand, J.-M. Tarascon, Building better batteries, nature. 451 (2008) 652.
[2] T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Solar energy supply and storage for the legacy and nonlegacy worlds, Chem. Rev. 110 (2010) 6474-6502.
[3] J. Potočnik, Renewable energy sources and the realities of setting an energy agenda, Sci. 315 (2007) 810-811.
[4] M.A. Abdelkareem, A. Allagui, E.T. Sayed, M.E.H. Assad, Z. Said, K. Elsaid, Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells, Renew. Energ. 131 (2019) 563-584.
[5] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. energy. 88 (2011) 981-1007.
[6] X. Huang, Z. Zhang, J. Jiang, Fuel cell technology for distributed generation: an overview, in: 2006 IEEE International Symposium on Industrial Electronics, IEEE. 2 (2006), 1613-1618.
[7] K. Liu, Y. Song, S. Chen, Oxygen reduction catalyzed by nanocomposites based on graphene quantum dots-supported copper nanoparticles, Int. J. Hydrog. Energy. 41 (2016) 1559-1567.
[8] A. ElMekawy, H.M. Hegab, K. Vanbroekhoven, D. Pant, Techno-productive potential of photosynthetic microbial fuel cells through different configurations, Renew. Sust. Energ. Rev. 39 (2014) 617-627.
[9] R. Kumar, L. Singh, A. Zularisam, Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications, Renew. Sust. Energ. Rev. 56 (2016) 1322-1336.
[10] E.G.F. Mercuri, A.Y.J. Kumata, E.B. Amaral, J.R.S. Vitule, Energy by Microbial Fuel Cells: Scientometric global synthesis and challenges, Renew. Sust. Energ. Rev. 65 (2016) 832-840.
[11] Z. Chai, C. Wang, H. Zhang, C.M. Doherty, B.P. Ladewig, A.J. Hill, H. Wang, Nafion–carbon nanocomposite membranes prepared using hydrothermal carbonization for proton‐exchange‐membrane fuel cells, Adv. Funct. Mater. 20 (2010) 4394-4399.
[12] S. Mohanapriya, S. Bhat, A. Sahu, A. Manokaran, R. Vijayakumar, S. Pitchumani, P. Sridhar, A. Shukla, Sodium-alginate-based proton-exchange membranes as electrolytes for DMFCs, Energy Environ. Sci. 3 (2010) 1746-1756.
[13] V. Neburchilov, J. Martin, H. Wang, J. Zhang, A review of polymer electrolyte membranes for direct methanol fuel cells, J. Power Sources. 169 (2007) 221-238.
[14] R. Wang, X. Wu, X. Yan, G. He, Z. Hu, Proton conductivity enhancement of SPEEK membrane through n-BuOH assisted self-organization, J. Membr. Sci. 479 (2015) 46-54.
[15] L. Mond, C. Langer, V. A new form of gas battery, Proc. R. Soc. 46 (1890) 296-304.
[16] P. Sector, Fuel cell today industry review 2011, Platin. Met. Rev. 55 (2011) 268-270.
[17] M.A. Abdelkareem, K. Elsaid, T. Wilberforce, M. Kamil, E.T. Sayed, A. Olabi, Environmental aspects of fuel cells: A review, Sci. Total Environ. 752 (2021) 141803.
[18] K. Chizari, A. Deneuve, O. Ersen, I. Florea, Y. Liu, D. Edouard, I. Janowska, D. Begin, C. Pham‐Huu, Nitrogen‐doped carbon nanotubes as a highly active metal‐free catalyst for selective oxidation, ChemSusChem. 5 (2012) 102-108.
[19] X.-K. Kong, C.-L. Chen, Q.-W. Chen, Doped graphene for metal-free catalysis, Chem. Soc. Rev. 43 (2014) 2841-2857.
[20] W.A. Saidi, Oxygen reduction electrocatalysis using N-doped graphene quantum-dots, J. Phys. Chem. Lett. 4 (2013) 4160-4165.
[21] M. Favaro, L. Ferrighi, G. Fazio, L. Colazzo, C. Di Valentin, C. Durante, F. Sedona, A. Gennaro, S. Agnoli, G. Granozzi, Single and multiple doping in graphene quantum dots: unraveling the origin of selectivity in the oxygen reduction reaction, ACS Catal. 5 (2014) 129-144.
[22] J.Y. Cheon, J.H. Kim, J.H. Kim, K.C. Goddeti, J.Y. Park, S.H. Joo, Intrinsic relationship between enhanced oxygen reduction reaction activity and nanoscale work function of doped carbons, J. Am. Chem. Soc. 136 (2014) 8875-8878.
[23] H. Jin, H. Huang, Y. He, X. Feng, S. Wang, L. Dai, J. Wang, Graphene quantum dots supported by graphene nanoribbons with ultrahigh electrocatalytic performance for oxygen reduction, J. Am. Chem. Soc. 137 (2015) 7588-7591.
[24] L.L. Li, J. Ji, R. Fei, C.Z. Wang, Q. Lu, J.R. Zhang, L.P. Jiang, J.J. Zhu, A facile microwave avenue to electrochemiluminescent two‐color graphene quantum dots, Adv. Funct. Mater. 22 (2012) 2971-2979.
[25] Y. Liu, P. Wu, Graphene quantum dot hybrids as efficient metal-free electrocatalyst for the oxygen reduction reaction, ACS Appl Mater Interfaces. 5 (2013) 3362-3369.
[26] S. Zhuo, M. Shao, S.-T. Lee, Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis, ACS nano. 6 (2012) 1059-1064.
[27] M. Hassan, K.R. Reddy, E. Haque, S.N. Faisal, S. Ghasemi, A.I. Minett, V.G. Gomes, Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode, Compos. Sci. Technol. 98 (2014) 1-8.
[28] N. Mohanty, D. Moore, Z. Xu, T. Sreeprasad, A. Nagaraja, A.A. Rodriguez, V. Berry, Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size, Nat. Commun. 3 (2012) 844.
[29] L. Zheng, Y. Chi, Y. Dong, J. Lin, B. Wang, Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite, J. Am. Chem. Soc. 131 (2009) 4564-4565.
[30] J. Zhou, C. Booker, R. Li, X. Zhou, T.-K. Sham, X. Sun, Z. Ding, An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs), J. Am. Chem. Soc. 129 (2007) 744-745.
[31] H. Li, X. He, Y. Liu, H. Huang, S. Lian, S.-T. Lee, Z. Kang, One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties, Carbon. 49 (2011) 605-609.
[32] Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, J. Am. Chem. Soc. 130 (2008) 5856-5857.
[33] Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid, Carbon. 50 (2012) 4738-4743.
[34] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao, Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots, ACS nano. 6 (2012) 5102-5110.
[35] J. Sakamoto, J. van Heijst, O. Lukin, A.D. Schlüter, Two‐dimensional polymers: just a dream of synthetic chemists?, Angew. Chem. Int. Ed. 48 (2009) 1030-1069.
[36] C.D. Simpson, J.D. Brand, A.J. Berresheim, L. Przybilla, H.J. Räder, K. Müllen, Synthesis of a giant 222 carbon graphite sheet, Chem. Eur. J. 8 (2002) 1424-1429.
[37] X. Yan, B. Li, X. Cui, Q. Wei, K. Tajima, L.-s. Li, Independent tuning of the band gap and redox potential of graphene quantum dots, J. Phys. Chem. Lett. 2 (2011) 1119-1124.
[38] X. Yan, L.-s. Li, Solution-chemistry approach to graphene nanostructures, J. Mater. Chem. 21 (2011) 3295-3300.
[39] Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, L. Qu, An electrochemical avenue to green‐luminescent graphene quantum dots as potential electron‐acceptors for photovoltaics, Adv Mater. 23 (2011) 776-780.
[40] J. Lu, P.S.E. Yeo, C.K. Gan, P. Wu, K.P. Loh, Transforming C 60 molecules into graphene quantum dots, Nat. Nanotechnol. 6 (2011) 247.
[41] G. Chen, Z. Zhuo, K. Ni, N.Y. Kim, Y. Zhao, Z. Chen, B. Xiang, L. Yang, Q. Zhang, Z. Lee, Rupturing C60 Molecules into Graphene‐Oxide‐like Quantum Dots: Structure, Photoluminescence, and Catalytic Application, Small. 11 (2015) 5296-5304.
[42] E. Haque, J. Kim, V. Malgras, K.R. Reddy, A.C. Ward, J. You, Y. Bando, M.S.A. Hossain, Y. Yamauchi, Recent advances in graphene quantum dots: synthesis, properties, and applications, Small Methods. 2 (2018) 1800050.
[43] Z.A.C. Ramli, N. Shaari, T.S.T. Saharuddin, Progress and major BARRIERS of nanocatalyst development in direct methanol fuel cell: A review, Int. J. Hydrog. Energy. 47 (2022) 22114-22146.
[44] S.N. Shreyanka, J. Theerthagiri, S.J. Lee, Y. Yu, M.Y. Choi, Multiscale design of 3D metal–organic frameworks (M− BTC, M: Cu, Co, Ni) via PLAL enabling bifunctional electrocatalysts for robust overall water splitting, Chem. Eng. J. 446 (2022) 137045.
[45] H.C. Lim, S.H. Min, E. Lee, J. Jang, S.H. Kim, J.-I. Hong, Self-assembled poly (3, 4-ethylene dioxythiophene): poly (styrenesulfonate)/graphene quantum dot organogels for efficient charge transport in photovoltaic devices, ACS Appl Mater Interfaces. 7 (2015) 11069-11073.
[46] C. Luk, L. Tang, W. Zhang, S. Yu, K. Teng, S. Lau, An efficient and stable fluorescent graphene quantum dot–agar composite as a converting material in white light emitting diodes, J. Mater. Chem. 22 (2012) 22378-22381.
[47] D.K. Chan, P.L. Cheung, C.Y. Jimmy, A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots, Beilstein J. Nanotechnol. 5 (2014) 689-695.
[48] X. Chu, P. Dai, Y. Dong, W. Sun, L. Bai, W. Zhang, The acetic acid gas sensing properties of graphene quantum dots (GQDs)–ZnO nanocomposites prepared by hydrothermal method, J. Mater. Sci. Mater. Electron. 28 (2017) 19164-19173.
[49] J. Liu, L. Qin, S.-Z. Kang, G. Li, X. Li, Gold nanoparticles/glycine derivatives/graphene quantum dots composite with tunable fluorescence and surface enhanced Raman scattering signals for cellular imaging, Mater. Des. 123 (2017) 32-38.
[50] L.M. Long, N.N. Dinh, T.Q. Trung, Synthesis and characterization of polymeric graphene quantum dots based nanocomposites for humidity sensing, J. Nanomater. 2016 (2016).
[51] X. Wu, Y. Zhang, T. Han, H. Wu, S. Guo, J. Zhang, Composite of graphene quantum dots and Fe 3 O 4 nanoparticles: peroxidase activity and application in phenolic compound removal, RSC Adv. 4 (2014) 3299-3305.
[52] X. Zhou, X. Gao, F. Song, C. Wang, F. Chu, S. Wu, A sensing approach for dopamine determination by boronic acid-functionalized molecularly imprinted graphene quantum dots composite, Appl. Surf. Sci. 423 (2017) 810-816.
[53] E. Zor, E. Morales-Narváez, A. Zamora-Gálvez, H. Bingol, M. Ersoz, A. Merkoçi, Graphene quantum dots-based photoluminescent sensor: a multifunctional composite for pesticide detection, ACS Appl Mater Interfaces. 7 (2015) 20272-20279.
[54] S. Mondal, U. Rana, S. Malik, Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials, Chem comm. 51 (2015) 12365-12368.
[55] Q. Chen, Y. Hu, C. Hu, H. Cheng, Z. Zhang, H. Shao, L. Qu, Graphene quantum dots–three-dimensional graphene composites for high-performance supercapacitors, Phys. Chem. Chem. Phys. 16 (2014) 19307-19313.
[56] S. Dhar, T. Majumder, S.P. Mondal, Phenomenal improvement of external quantum efficiency, detectivity and responsivity of nitrogen doped graphene quantum dot decorated zinc oxide nanorod/polymer schottky junction UV detector, Mater. Res. Bull. 95 (2017) 198-203.
[57] A. Cai, X. Wang, Y. Qi, Z. Ma, Hierarchical ZnO/S, N: GQD composites: Biotemplated synthesis and enhanced visible-light-driven photocatalytic activity, Appl. Surf. Sci. 391 (2017) 484-490.
[58] X. Bu, S. Yang, Y. Bu, P. He, Y. Yang, G. Wang, H. Li, P. Wang, X. Wang, G. Ding, Highly Active Black TiO2/N‐doped Graphene Quantum Dots Nanocomposites For Sunlight Driven Photocatalytic Sewage Treatment, ChemistrySelect. 3 (2018) 201-206.
[59] Y. Ji, J. Hu, J. Biskupek, U. Kaiser, Y.F. Song, C. Streb, Polyoxometalate‐Based Bottom‐Up Fabrication of Graphene Quantum Dot/Manganese Vanadate Composites as Lithium Ion Battery Anodes, Chem. Eur. J. 23 (2017) 16637-16643.
[60] C. Lan, J. Zhao, L. Zhang, C. Wen, Y. Huang, S. Zhao, Self-assembled nanoporous graphene quantum dot-Mn 3 O 4 nanocomposites for surface-enhanced Raman scattering based identification of cancer cells, RSC Adv. 7 (2017) 18658-18667.
[61] X. Wu, S. Guo, J. Zhang, Selective oxidation of veratryl alcohol with composites of Au nanoparticles and graphene quantum dots as catalysts, Chem comm. 51 (2015) 6318-6321.
[62] X. Chu, J. Wang, J. Zhang, Y. Dong, W. Sun, W. Zhang, L. Bai, Preparation and gas-sensing properties of SnO 2/graphene quantum dots composites via solvothermal method, J. Mater. Sci. 52 (2017) 9441-9451.
[63] Z. Zhang, C. Fang, X. Bing, Y. Lei, Graphene quantum dots-ZnS nanocomposites with improved photoelectric performances, Mater. 11 (2018) 512.
[64] J. Guo, H. Zhu, Y. Sun, L. Tang, X. Zhang, Doping MoS2 with graphene quantum dots: structural and electrical engineering towards enhanced electrochemical hydrogen evolution, Electrochim. Acta. 211 (2016) 603-610.
[65] V. Kumar, A. Kumar, A.M. Biradar, G. Reddy, D. Sachdev, R. Pasricha, Enhancement of electro-optical response of ferroelectric liquid crystal: the role of graphene quantum dots, Liq. Cryst. 41 (2014) 1719-1725.
[66] P.R. Kharangarh, S. Umapathy, G. Singh, Synthesis and luminescence of ceria decorated graphene quantum dots (GQDs): Evolution of band gap, Integr. Ferroelectr. 184 (2017) 114-123.
[67] Z. Protich, P. Wong, K. Santhanam, Composite of Zinc Using Graphene Quantum Dot Bath: A Prospective Material For Energy Storage, ACS Sustain. Chem. Eng. 4 (2016) 6177-6185.
[68] T. Hu, X. Chu, F. Gao, Y. Dong, W. Sun, L. Bai, Trimethylamine sensing properties of graphene quantum Dots/α-Fe2O3 composites, J. Solid State Chem. 237 (2016) 284-291.
[69] H. Liu, Q. Zhao, J. Liu, X. Ma, Y. Rao, X. Shao, Z. Li, W. Wu, H. Ning, M. Wu, Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction, Appl. Surf. Sci. 423 (2017) 909-916.
[70] S. Kundu, R.M. Yadav, T. Narayanan, M.V. Shelke, R. Vajtai, P.M. Ajayan, V.K. Pillai, Synthesis of N, F and S co-doped graphene quantum dots, Nanoscale. 7 (2015) 11515-11519.
[71] L. Tang, R. Ji, X. Li, K.S. Teng, S.P. Lau, Energy-level structure of nitrogen-doped graphene quantum dots, J. Mater. Chem. C. 1 (2013) 4908-4915.
[72] X. Zhou, Z. Tian, J. Li, H. Ruan, Y. Ma, Z. Yang, Y. Qu, Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction, Nanoscale. 6 (2014) 2603-2607.
[73] Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, L. Qu, Nitrogen-doped graphene quantum dots with oxygen-rich functional groups, J. Am. Chem. Soc. 134 (2011) 15-18.
[74] Q. Li, S. Zhang, L. Dai, L.-s. Li, Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction, J. Am. Chem. Soc. 134 (2012) 18932-18935.
[75] D.B. Shinde, V.M. Vishal, S. Kurungot, V.K. Pillai, Electrochemical preparation of nitrogen-doped graphene quantum dots and their size-dependent electrocatalytic activity for oxygen reduction, Bull. Mater. Sci. 38 (2015) 435-442.
[76] H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E.L. Samuel, P.M. Ajayan, J.M. Tour, Boron-and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction, ACS nano. 8 (2014) 10837-10843.
[77] X. Wu, F. Tong, X. Yong, J. Zhou, L. Zhang, H. Jia, P. Wei, Effect of NaX zeolite-modified graphite felts on hexavalent chromium removal in biocathode microbial fuel cells, J. Hazard. Mater. 308 (2016) 303-311.
[78] C. Tang, Q. Zhang, Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects, Adv Mater. 29 (2017) 1604103.
[79] J. Zhang, L. Dai, Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction, ACS Catal. 5 (2015) 7244-7253.
[80] M. Kaur, M. Kaur, V.K. Sharma, Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment, Adv. Colloid Interface Sci. 259 (2018) 44-64.
[81] T. Fan, G. Zhang, L. Jian, I. Murtaza, H. Meng, Y. Liu, Y. Min, Facile synthesis of defect-rich nitrogen and sulfur Co-doped graphene quantum dots as metal-free electrocatalyst for the oxygen reduction reaction, J. Alloys Compd. 792 (2019) 844-850.
[82] M. Fan, C. Zhu, J. Yang, D. Sun, Facile self-assembly N-doped graphene quantum dots/graphene for oxygen reduction reaction, Electrochim. Acta. 216 (2016) 102-109.
[83] J. Kibsgaard, Z. Chen, B.N. Reinecke, T.F. Jaramillo, Engineering the surface structure of MoS 2 to preferentially expose active edge sites for electrocatalysis, Nat. Mater. 11 (2012) 963.
[84] T. Wang, D. Gao, J. Zhuo, Z. Zhu, P. Papakonstantinou, Y. Li, M. Li, Size‐Dependent Enhancement of Electrocatalytic Oxygen‐Reduction and Hydrogen‐Evolution Performance of MoS2 Particles, Chem. Eur. J. 19 (2013) 11939-11948.
[85] L. Sun, Y. Luo, M. Li, G. Hu, Y. Xu, T. Tang, J. Wen, X. Li, L. Wang, Role of Pyridinic-N for Nitrogen-doped graphene quantum dots in oxygen reaction reduction, J. Colloid Interface Sci. 508 (2017) 154-158.
[86] J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B. 108 (2004) 17886-17892.
[87] A.M. Herring, Inorganic–polymer composite membranes for proton exchange membrane fuel cells, J. macromol. sci., Polym. rev. 46 (2006) 245-296.
[88] M. Maréchal, F. Niepceron, G. Gebel, H. Mendil-Jakani, H. Galiano, Inside the structure of a nanocomposite electrolyte membrane: how hybrid particles get along with the polymer matrix, Nanoscale. 7 (2015) 3077-3087.
[89] A.K. Mishra, S. Bose, T. Kuila, N.H. Kim, J.H. Lee, Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells, Prog. Polym. Sci. 37 (2012) 842-869.
[90] P. Antonucci, A. Arico, P. Cretı, E. Ramunni, V. Antonucci, Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation, Solid State Ion. 125 (1999) 431-437.
[91] E.-B. Cho, D.X. Luu, D. Kim, Enhanced transport performance of sulfonated mesoporous benzene-silica incorporated poly (ether ether ketone) composite membranes for fuel cell application, J. Membr. Sci. 351 (2010) 58-64.
[92] Y.-H. Su, Y.-L. Liu, Y.-M. Sun, J.-Y. Lai, D.-M. Wang, Y. Gao, B. Liu, M.D. Guiver, Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells, J. Membr. Sci. 296 (2007) 21-28.
[93] D. Jung, S. Cho, D. Peck, D. Shin, J. Kim, Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell, J. Power Sources. 106 (2002) 173-177.
[94] R. Nagarale, G. Gohil, V.K. Shahi, R. Rangarajan, Organic− inorganic hybrid membrane: thermally stable cation-exchange membrane prepared by the sol− gel method, Macromol. 37 (2004) 10023-10030.
[95] B.P. Tripathi, V.K. Shahi, Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications, Prog. Polym. Sci. 36 (2011) 945-979.
[96] F. Xu, S. Mu, Nanoceramic oxide hybrid electrolyte membranes for proton exchange membrane fuel cells, J. Nanosci. Nanotechnol. 14 (2014) 1169-1180.
[97] S. Gahlot, V. Kulshrestha, Dramatic improvement in water retention and proton conductivity in electrically aligned functionalized CNT/SPEEK nanohybrid PEM, ACS Appl Mater Interfaces. 7 (2014) 264-272.
[98] Y.-L. Liu, Y.-H. Su, C.-M. Chang, D.-M. Wang, J.-Y. Lai, Preparation and applications of Nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells, J. Mater. Chem. 20 (2010) 4409-4416.
[99] Y. Jun, H. Zarrin, M. Fowler, Z. Chen, Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells, Int. J. Hydrog. 36 (2011) 6073-6081.
[100] B. Matos, E. Santiago, J. Rey, A. Ferlauto, E. Traversa, M. Linardi, F. Fonseca, Nafion-based composite electrolytes for proton exchange membrane fuel cells operating above 120 C with titania nanoparticles and nanotubes as fillers, J. Power Sources. 196 (2011) 1061-1068.
[101] B.R. Matos, E.I. Santiago, F.C. Fonseca, M. Linardi, V. Lavayen, R.G. Lacerda, L.O. Ladeira, A.S. Ferlauto, Nafion–titanate nanotube composite membranes for PEMFC operating at high temperature, J. Electrochem. Soc. 154 (2007) B1358-B1361.
[102] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, Firsov, AA, Two-dimensional gas of massless Dirac fermions in graphene, nature. 438 (2005) 197.
[103] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv Mater. 22 (2010) 3906-3924.
[104] Y. Huang, J. Liang, Y. Chen, An overview of the applications of graphene‐based materials in supercapacitors, Small. 8 (2012) 1805-1834.
[105] Y. Zhang, D. Li, X. Tan, B. Zhang, X. Ruan, H. Liu, C. Pan, L. Liao, T. Zhai, Y. Bando, High quality graphene sheets from graphene oxide by hot-pressing, Carbon. 54 (2013) 143-148.
[106] H.-P. Cong, X.-C. Ren, P. Wang, S.-H. Yu, Flexible graphene–polyaniline composite paper for high-performance supercapacitor, Energy Environ. Sci. 6 (2013) 1185-1191.
[107] A.K. Geim, Graphene: status and prospects, sci. 324 (2009) 1530-1534.
[108] H. Zarrin, D. Higgins, Y. Jun, Z. Chen, M. Fowler, Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells, J. Phys. Chem. C. 115 (2011) 20774-20781.
[109] D. Carter, M. Ryan, J. Wing, The fuel cell industry review 2013, Fuel Cell, 21 (2012).
[110] R.S. Malik, U. Soni, S.S. Chauhan, P. Verma, V. Choudhary, Development of functionalized quantum dot modified poly (vinyl alcohol) membranes for fuel cell applications, RSC Adv. 6 (2016) 47536-47544.