A glassy carbon electrode modified with boron-doped graphene oxide/ polyaspartic acid for electrochemical determination of oxazepam
Subject Areas : Iranian Journal of CatalysisMaryam Behravan 1 , Hossein Aghaie 2 , Masoud Giahi 3 , Laleh Maleknia 4
1 - Department of Chemistry, Sciences and Research Brench, Islamic Azad University, Tehran, Iran
2 - Department of Chemistry, Sciences and Research Brench, Islamic Azad University, Tehran, Iran
3 - Department of Chemistry, South Tehran Branch, Islamic Azad University, Tehran, Iran
4 - Department of Biomedical Enginiring, South Tehran Branch, Islamic Azad University, Tehran, Iran
Keywords:
Abstract :
[1] J. Janecek, N.D. Vestre, B.C. Schiele, R. Zimmermann, Oxazepam in the treatment of anxiety states: A controlled study, J. Psy. Res. 4 (1966) 199-206.
[2] J. Sarris, A. Scholey, I. Schweitzer, C. Bousman, E. LaPorte, C. Ng, G. Murray, C. Stough, The acute effects of kava and oxazepam on anxiety, mood, neurocognition; and genetic correlates: a randomized, placebo‐controlled, double‐blind study, Hum. Psychopharmacol. 27 (2012) 262-269.
[3] G.L. Mackinnon, W.A. Parker, Benzodiazepine withdrawal syndrome: a literature review and evaluation, Am J Drug Alcohol Abuse. 9 (1982) 19-33.
[4] A. Goldnik, M. Gajewska, M. Jaworska, Determination of oxazepam and diazepam in body fluids by HPLC, Acta Pol. Pharm. 50 (1993) 421-421.
[5] L. Banaszkiewicz, M.K. Woźniak, M. Kata, E. Domagalska, M. Wiergowski, B. Szpiech, A. Kot-Wasik, Rapid and simple multi-analyte LC–MS/MS method for the determination of benzodiazepines and Z-hypnotic drugs in blood samples: development, validation and application based on three years of toxicological analyses, J. Pharm. Biomed. 191 (2020) 113569.
[6] A. Bakhshi, A.P. Daryasari, M. Soleimani, A Molecularly Imprinted Polymer as the Adsorbent for the Selective Determination of Oxazepam in Urine and Plasma Samples by High-Performance Liquid Chromatography with Diode Array Detection, J. Anal. Chem. 76 (2021) 1414-1421.
[7] G. Popović, D. Sladić, V.M. Stefanović, L.B. Pfendt, Study on protolytic equilibria of lorazepam and oxazepam by UV and NMR spectroscopy, J. Pharm. Biomed. Anal. 31 (2003) 693-699.
[8] A.B. Tabrizi, M. Harasi, Applying cloud point extraction technique for the extraction of oxazepam from human urine as a colour or fluorescent derivative prior to spectroscopic analysis methods, Drug Test. Anal. 4 (2012) 145-150.
[9] U. Guth, W. Vonau, J. Zosel, Recent developments in electrochemical sensor application and technology—a review, Meas. Sci. Technol. 20 (2009) 042002.
[10] E. Sohouli, E.M. Khosrowshahi, P. Radi, E. Naghian, M. Rahimi-Nasrabadi, F. Ahmadi, Electrochemical sensor based on modified methylcellulose by graphene oxide and Fe3O4 nanoparticles: Application in the analysis of uric acid content in urine, J. Electroanal. Chem. 877 (2020) 114503.
[11] F. Gandomi, E.M. Khosrowshahi, E. Sohouli, M. Aghaei, M.S. Mohammadnia, E. Naghian, M. Rahimi-Nasrabadi, Linagliptin electrochemical sensor based on carbon nitride-β-cyclodextrin nanocomposite as a modifier, J. Electroanal. Chem. (2020) 114697.
[12] T.H. Sanatkar, A. Khorshidi, R. Yaghoubi, E. Sohouli, J. Shakeri, Stöber synthesis of salen-formaldehyde resin polymer-and carbon spheres with high nitrogen content and application of the corresponding Mn-containing carbon spheres as efficient electrocatalysts for the oxygen reduction reaction, RSC Adv. 10 (2020) 27575-27584.
[13] M. Giahi, O. Marvi, F. Safari, B. Chahkandi, Determination of betamethasone sodium phosphate in pharmaceuticals by potentiometric membrane sensor based on its lidocaine ion pair, J. Anal. Chem. 68 (2013) 900-905.
[14] J. Wang, Modified electrodes for electrochemical sensors, Electroanalysis, 3 (1991) 255-259.
[15] F. Ghaemi-Amiri, H. Aghaie, M. Giahi, M. Mozaffari, Electrocatalytic Oxidation Study of Theophylline on a Copper Nanoparticles-Modified, Carbon Paste Electrode Based on Cyclic Voltammetry, IJCCE. 39 (2020) 99-112.
[16] M. Firouzi, M. Giahi, M. Najafi, S.S. Homami, S.H.H. Mousavi, Electrochemical determination of amlodipine using a CuO-NiO nanocomposite/ionic liquid modified carbon paste electrode as an electrochemical sensor, J Nanopart. Res. 23 (2021) 1-12.
[17] J. Bruinink, C. Kregting, J. Ponjee, Modified viologens with improved electrochemical properties for display applications, J. Electrochem. Soc. 124 (1977) 1854.
[18] E. Naghian, F. Shahdost-fard, E. Sohouli, V. Safarifard, M. Najafi, M. Rahimi-Nasrabadi, A. Sobhani-Nasab, Electrochemical determination of levodopa on a reduced graphene oxide paste electrode modified with a metal-organic framework, Microchem. J. (2020) 104888.
[19] M. Behravan, H. Aghaie, M. Giahi, L. Maleknia, Determination of doxorubicin by reduced graphene oxide/gold/polypyrrole modified glassy carbon electrode: A new preparation strategy, Diam. Relat. Mater.117 (2021) 108478.
[20] M. Rostami, Photodecomposition and adsorption of hazardous organic pollutants by Ce-doped ZnO@ Ce-doped TiO2-N/S-dual doped RGO ternary nano-composites photocatalyst for water remediation, J. Mol. Struct.185 (2019) 191-199.
[21] P. Rani, V. Jindal, Designing band gap of graphene by B and N dopant atoms. RSC Adv. 3 (3): 802–812, in, 2013.
[22] H. Mousavi, R. Moradian, Nitrogen and boron doping effects on the electrical conductivity of graphene and nanotube, Solid State Sci. 13 (2011) 1459-1464.
[23] L. Sun, C. Tian, Y. Fu, Y. Yang, J. Yin, L. Wang, H. Fu, Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors, Chem. Eur. J. 20 (2014) 564-574.
[24] N.M. Kumar, K. Varaprasad, K.M. Rao, A.S. Babu, M. Srinivasulu, S.V. Naidu, A novel biodegradable green poly (l-aspartic acid-citric acid) copolymer for antimicrobial applications, J Polym Environ. 20 (2012) 17-22.
[25] N. Shadjou, S. Alizadeh, M. Hasanzadeh, Sensitive monitoring of taurine biomarker in unprocessed human plasma samples using a novel nanocomposite based on poly (aspartic acid) functionalized by graphene quantum dots, J. Mol. Recognit. 31 (2018) e2737.
[26] B. Mekassa, M. Tessema, B.S. Chandravanshi, M. Tefera, Square wave voltammetric determination of ibuprofen at poly (l-aspartic acid) modified glassy carbon electrode, IEEE Sens. J. 18 (2017) 37-44.
[27] Y.-P. Chang, C.-L. Ren, J.-C. Qu, X.-G. Chen, Preparation and characterization of Fe3O4/graphene nanocomposite and investigation of its adsorption performance for aniline and p-chloroaniline, Appl. Sur. Sci. 261 (2012) 504-509.
[28] M. Rostami, P. Sharafi, S. Mozaffari, K. Adib, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M. Fasihi-Ramandi, M.R. Ganjali, A. Badiei, A facile preparation of ZnFe 2 O 4–CuO-N/B/RGO and ZnFe 2 O 4–CuO–C 3 N 4 ternary heterojunction nanophotocatalyst: characterization, biocompatibility, photo-Fenton-like degradation of MO and magnetic properties, J. Mat. Sci. 32 (2021) 5457-5472.
[29] S. Bonyadi, K. Ghanbari, Electrochemical synthesis of Poly (melamine)-Poly (aspartic acid) copolymer for highly sensitive and selective determination of dopamine, Mat. Chem. Phy. 267 (2021) 124683.
[30] M.G. Rodríguez, O.V. Kharissova, U. Ortiz-Mendez, Formation of boron carbide nanofibers and nanobelts from heated by microwave, Rev. Adv. Mater. Sci. 7 (2004) 55-60.
[31] K. Shirai, S. Emura, S.i. Gonda, Y. Kumashiro, Infrared study of amorphous B1− x C x films, J. App. Phys. 78 (1995) 3392-3400.
[32] C. Hontoria-Lucas, A. López-Peinado, J.d.D. López-González, M. Rojas-Cervantes, R. Martín-Aranda, Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization, Carbon, 33 (1995) 1585-1592.
[33] M. Acik, G. Lee, C. Mattevi, A. Pirkle, R.M. Wallace, M. Chhowalla, K. Cho, Y. Chabal, The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy, J. Phys. Chem. C, 115 (2011) 19761-19781.
[34] A.J. Page, C.-P. Chou, B.Q. Pham, H.A. Witek, S. Irle, K. Morokuma, Quantum chemical investigation of epoxide and ether groups in graphene oxide and their vibrational spectra, Phys. Chem. Chem. Phys. 15 (2013) 3725-3735.
[35] A.K. Das, M. Srivastav, R.K. Layek, M.E. Uddin, D. Jung, N.H. Kim, J.H. Lee, Iodide-mediated room temperature reduction of graphene oxide: a rapid chemical route for the synthesis of a bifunctional electrocatalyst, J. Mat. Chem. A, 2 (2014) 1332-1340.
[36] Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, JACS. 130 (2008) 5856-5857.
[37] T. Van Khai, H.G. Na, D.S. Kwak, Y.J. Kwon, H. Ham, K.B. Shim, H.W. Kim, Comparison study of structural and optical properties of boron-doped and undoped graphene oxide films, Chem. Eng. J. 211 (2012) 369-377.
[38] M. Vahidifar, Z. Es’haghi, Magnetic Nanoparticle-Reinforced Dual-Template Molecularly Imprinted Polymer for the Simultaneous Determination of Oxazepam and Diazepam Using an Electrochemical Approach, J. Anal. Chem. 77 (2022) 625-639.
[39] M.E. Lozano-Chaves, J. Palacios-Santander, L. Cubillana-Aguilera, I. Naranjo-Rodríguez, J. Hidalgo-Hidalgo-de-Cisneros, Modified carbon-paste electrodes as sensors for the determination of 1, 4-benzodiazepines: application to the determination of diazepam and oxazepam in biological fluids, Sens. Actuators B Chem. 115 (2006) 575-583.
[40] A. Khoshroo, L. Hosseinzadeh, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, H. Ehrlich, Development of electrochemical sensor for sensitive determination of oxazepam based on silver-platinum core–shell nanoparticles supported on graphene, J. Electroanal. Chem. 823 (2018) 61-66.
[41] H. Ashrafi, S. Hassanpour, A. Saadati, M. Hasanzadeh, K. Ansarin, S.A. Ozkan, N. Shadjou, A. Jouyban, Sensitive detection and determination of benzodiazepines using silver nanoparticles-N-GQDs ink modified electrode: A new platform for modern pharmaceutical analysis, Microchem. J. 145 (2019) 1050-1057.
[42] H. Ashrafi, A. Mobed, M. Hasanzadeh, P. Babaie, K. Ansarin, A. Jouyban, Monitoring of five benzodiazepines using a novel polymeric interface prepared by layer by layer strategy, Microchem. J. 146 (2019) 121-125.