Eco-friendly synthesis of zinc oxide nanoparticles using Bacillus Subtilis, characterization and antibacterial potential against Staphylococcus aureus associated with cardiac catheterization
Subject Areas : Iranian Journal of Catalysis
1 - Department of Biology, College of Sciences, University of AL-Qadisiyah, Iraq
Keywords:
Abstract :
[1] Beyth, N.; Houri-Haddad, Y.; Domb, A.; Khan, W. and Hazan, R. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials. Evidence-Based Complementary and Alternative Medicine. 16 (2015) 246012.
[2] Jalal, R.; Goharshadi, E.K.; Abareshi, M.; Moosavi, M.; Yousefi, A. and Nancarrow, P. ZnO nanofluids: green synthesis,characterization, and antibacterial activity. Mater. Chem. Phys. 121(1) (2010) 198–120.
[3] Jones, N.; Ray, B.; Ranjit, K. T.; and Manna, A. C. Antibacterial activityof ZnO nanoparticle suspensions on a broad spectrum ofmicroorganisms. FEMS Microbiology Letters, 279(1) (2008) 71–76.
[4] Abdulrahman, N.B., Nssaif, Z.M. . Antimicrobial Activity of Zinc Oxide, titanium Dioxide and Silver Nanoparticles Against Mithicillin-Resistant Staphylococcus aureus Isolates. Tikrit J. Pure Sci., 21(3) (2016) 49-53.
[5] Ahmadi Shadmehri, A., Namvar, F., Miri, H., Yaghmaei, P., Nakhaei Moghaddam, M. . Assessment of antioxidant and antibacterial activities of Zinc Oxide nanoparticles, Graphene and Graphene decorated by Zinc Oxide nanoparticles. Inter. J. Nano Dimension 10 (2019) 350–358.
[6] Heer, A.S.K. Mansooria, S.M. and Chamria, N. Biosynthesis andcharacterization of Zno nanoparticles using ficus religiosa leavesextract. World J. Phrma. Res., 6 (10) (2017), 818-826.
[7] Baskar, G.; Chandhuru, J.; Fahad, K. S.; and Praveen, A.S. MycologicalSynthesis, Characterization and Antifungal Activity of Zinc Oxide Nanoparticles. Asian Pharma Press, 3(4) (2013) 142–146.
[8] Kasemets, K.; Ivask, A.; Dubourguier, H.C. and Kahru, A. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomycescerevisiae. Toxicol. In Vitro, 23(6) (2009) 1116–1122.
[9] Kulkarni, S. S. and Shirsat, M. D. Optical and Structural Properties of Zinc Oxide Nanoparticles. IJARPS. 2(1) (2015) 14-18.
[10] Li, M.; Zhu, L. and Lin, D. Toxicity of ZnO nanoparticles to Escherichiacoli: mechanism and the influence of medium components. Environ.Sci. Technol. 45(5) (2011) 1977–1983.
[11] Alok D, Vyom S Toxicity assessment of nanomaterials: methodsand challenges. Anal. Bioanal. Chem. 398(2) (2010) 589-605.
[12] Shantikumar N, Abhilash S, VVDivya R, Deepthy M, Seema N, ManzoorK, Satish R Role of size scale of ZnO nanoparticles andmicroparticles on toxicity toward bacteria and osteoblast cancer cellsJ. Mater. Sci: Mater. Med. 20 (2009) 235–241.
[13] Toshiaki O, Osamu Y, Yasuhiro I, Zenbe-e N Antibacterial activity of ZnO powder with crystallographic orientation. J. Mater. Sci. Mater. Med. 19(3) (2008) 1407-1412.
[14] Zhongbing H, Xu Zh, Danhong Y, Guangfu Y, Xiaoming L, Yunqing K,Yadong Yao, Di Huang, Baoqing H Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir, 24(8) (2008) 4140–4144.
[15] Al-Aawadi, KK. Antibiotic profile and molecular characterization of Staphylococcus aureus isolated from Tonsillitis patients at Thi-Qar Province. Master thesis. College of Sciences Thi-Qar University, Iraq (2014).
[16] Al-Dahbi, A M. and Al-Mathkhury, H J. Distribution of Methicillin Resistant Staphylococcus aureus in Iraqi patients and healthcare worker. Iraqi. J. Sci., 54 (2013) 293-300.
[17] Alikhani, A., et al., Minimal inhibitory concentration of microorganisms causing surgical site infection in referral hospitals in North of Iran, 2011-2012. Caspian J. Internal Med. 6(1) (2015) 34-39.
[18] Al-Mussawi, AA Detection of Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus (MRSA) from human clinical specimens using conventional biochemical testes and chromogenic media. Indian J. Epp. Res. 4(2) (2014) 7-9.
[19] Asghar, AH Molecular characterization of Methicillin-Resistant Staphylococcus aureus isolated from tertiary care Hospitals. Pak. J. Med. Sci., 30(4) (2014) 698-702.
[20] MacFaddin, J F. Biochemical tests for identification of medical bacteria. (3rd.ed). Lippinocott Williams &Wilkins, USA, (2000) 555-565.
[21] Selvarajan E, Mohanasrinivasan V. Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarumVITES07. Mater. Lett. 112 (2013) 180-182.
[22] Wang D, Cui L, Chang X, Guan D. Biosynthesis and characterization of zinc oxide nanoparticles from Artemisia annua andinvestigate their effect on proliferation, osteogenic differentiationand mineralization in human osteoblast-like MG-63 Cells. J Photochem Photobiol B. 202 (2020) 111652.
[23] Kumar, H. and Rani, R. Structural and Optical Characterization of ZnONanoparticles Synthesized by Microemulsion Route. Inter. Lett. Chem. Phys. Astronomy, 14 (2013) 26-36.
[24] Mohan KK, Mandal BK, Appala NE, Sinha M, Siva KK,Sreedhara RP. Synthesis and characterisation of flower shapedzinc oxide nanostructures and its antimicrobial activity. SpectrochimActa A Mol Biomol Spectrosc. 15 (2013) 256-259.
[25] Pati, R.; Mehta, R.K.; Mohanty, S.; Padhi, A.; Sengupta, M.; Vaseeharan, B. Topical application of zinc oxide nanoparticles reducesbacterial skin infection in mice and exhibits antibacterial activity byinducing oxidative stress response and cell membrane disintegration inmacrophages. Nanomedicine., 10(6) (2014) 1195-208.
[26] Płaza, G. A.; Chojniak, J. and Banat, I. M. Biosurfactant MediatedBiosynthesis of Selected Metallic Nanoparticles. Int. J. Mol. Sci., 15 (2014) 13720-13737.
[27] Lingling Z, Yunhong J, Yulong D, Malcolm P, David Y .Investigation into the antibacterial behavior of suspensions of ZnOnanoparticles (ZnO nanofluids). J. Nanoparticle Res. 9(3) (2006) 479-489.
[28] Mohsen J, Zahra B. Protein nanoparticle: A unique system as drug delivery vehicles. Afr. J. Biotechnol., 7(25) (2008) 4926-4934.
[29] K. Mandava, K. Kadimcharla, N. R. Keesara, S. N. Fatima, P. Bommena, U. R. Batchu, ‘Green Synthesis of Stable Copper Nanoparticles and Synergistic Activity with Antibiotics’, Indian J. Pharm. Sci. 79(5) (2017) 695 –700.
[30]Bhave PP, Kartikeyan S, Ramteerthakar MN, Patil NR. Bacteriological study of surgical site infections in a tertiary care hospital at Miraj, Maharashtra state, India. Int. J. Res. Med. Sci. 4(7) (2016) 2630-2635.
[31] Blauwet, L. A., & Redberg, R. F. The role of sex-specific results reporting in cardiovascular disease. Cardiology in review, 15(6) (2007) 275-278.
[32] Zavareh, MS. Tohidi, M. Sabouri A. Infectious and coronary artery disease. ARYA Atheroscler. 12 (1) (2016) 41-49.
[33] Bouza, E.; Muñoz, P.; López-Rodrígues ,J.; Jesús Pérez ,M.; Rincón, C.;Martín Rabadán, P.; Sánchez, C.& Bastida, EA needleless closed system device (CLAVE) protects from intravascular catheter tip and hub. J. Hosp. Infect., 54( 2003) 279-287.
[34] Levy, S.B. and Marshall, B. Antibacterial resistance worldwide: causes,challenges and responses, Nat. Med., 10 (2004) S122-S129.
[35] Organization, W.H. Antimicrobial resistance: global report on surveillance, World Health Organization. (2014).
[36] Li, X., Xu, H., Chen, Z. and Chen, G. Biosynthesis of Nanoparticles bymicroorganisms and there application. J. Nanomat. 8 (2011) 1-16.
[37] Mukherjee, A.; Sadiq, M. I.; Prathna, T. C. and Chandrasckaran, N. Antimicrobial activity of aluminum oxide nanoparticles for potential clinical applications. Communicating Res. Technological Adv. (2011). 245–251.
[38] Rizwan W, Nagendra KK, Akhilesh KV, Anurag M, Hwang IH, You-Bing Y, Hyung-Shik Sh, Young-Soon K Fabrication and growthmechanism of ZnO nanostructures and their cytotoxic effect onhuman brain tumor U87, cervical cancer HeLa, and normal HEKcells. J. Biol. Inorg. Chem., 16(3) (2010b) 431-442.
[39] Siddiqi, K.S., Rahman, A., Tajuddin, Husen, A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Res. Lett., 13 (2018) 141-149.
[40] Kulkarni, S. S. and Shirsat, M. D. Optical and Structural Properties of Zinc Oxide Nanoparticles. IJARPS 2(1) (2015) 14-18.
[41] Pavani, K. V, Balakrishna, K. and Cheemarla, N. R. Biosynthesis of Zinc Nanoparticles by Aspergillus species, 5(1) (2011) 27–36.
[42] Reddy KM, Kevin F, Jason B, Denise GW, Cory H, Alex P. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. J. Appl. Phys. Lett., 90(21) (2007) 1-3.
[43] Khalil, M. A. E. F.; Sonbol, F. I.; Mohamed, A. F. B. and Ali, S. S. Comparative study of virulence factors among ESβL-producing and nonproducing Pseudomonas aeruginosa clinical isolates. Tur. J. Med. Sci. 45 (2015) 60-69.
[44] Slomberg, D.L., Lu, Y., Broadnax, A.D., Hunter, R.A., Carpenter, A.W., Schoenfisch, M.H. Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles. ACS Appl. Mater. Inter. 5(19) (2013) 9322–9329.
[45] Kasemets, K.; Ivask, A.; Dubourguier, H.C. and Kahru, A. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. In Vitro, 23(6) (2009) 1116–1122.