Cuprous oxide nanocubes functionalized with graphene quantum dots and its application for methylene blue degradation
Subject Areas : Iranian Journal of CatalysisQuyen Tran 1 , Dang Pham 2 , My Ngo 3 , Toan Pham 4 , Thien Doan 5 , Thanh Luong 6
1 - Department of Chemical Engineering, College of Technology, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 900000, Vietnam
2 - Department of Chemical Engineering, College of Technology, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 900000, Vietnam
3 - Department of Chemical Engineering, College of Technology, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 900000, Vietnam
4 - Department of Chemistry, College of Natural Sciences, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 900000, Vietnam
5 - Department of Chemical Engineering, College of Technology, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 900000, Vietnam
6 - Department of Chemical Engineering, College of Technology, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 900000, Vietnam
Keywords:
Abstract :
[1] Y. Wen, G. Schoups, N. Van De Giesen, Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change, Sci. Rep. 7(1) (2017) 1-9.
[2] A. Nezamzadeh-Ejhieh, E. Shahriari, Photocatalytic decolorization of methyl green using Fe (II)-o-phenanthroline as supported onto zeolite Y, J. Indust. Eng. Chem. 20(5) (2014) 2719-2726.
[3] H. Alkallas, A. Ben Gouider Trabelsi, R. Nasser, S. Fernandez, J.M. Song, H. Elhouichet, Promising Cr-Doped ZnO Nanorods for Photocatalytic Degradation Facing Pollution, Appl. Sci. 12(1) (2022) 34.
[4] A. Mallick, P.D. Patil, M.S. Tiwari, P. Kane, D. Khonde, Green and sustainable methods for dye degradation employing photocatalytic materials, Photocatalytic Degradation of Dyes, Elsevier2021, pp. 345-376.
[5] H. Derikvandi, A. Nezamzadeh-Ejhieh, A comprehensive study on enhancement and optimization of photocatalytic activity of ZnS and SnS2: Response Surface Methodology (RSM), nn heterojunction, supporting and nanoparticles study, J. Photochem. Photobio. A: Chem. 348 (2017) 68-78.
[6] B. Divband, A. Jodaei, M. Khatamian, Enhancement of photocatalytic degradation of 4-nitrophenol by integrating Ag nanoparticles with ZnO/HZSM-5 nanocomposite, Iran. J. Catal. 9(1) (2019) 63-70.
[7] P. Falcaro, R. Ricco, A. Yazdi, I. Imaz, S. Furukawa, D. Maspoch, R. Ameloot, J.D. Evans, C.J. Doonan, Application of metal and metal oxide nanoparticles@MOFs, Coordin. Chem. Rev. 307 (2016) 237-254.
[8] Q. Wang, Y. Zhu, J. Xue, X. Zhao, Z. Guo, C. Wang, General synthesis of porous mixed metal oxide hollow spheres with enhanced supercapacitive properties, ACS Appl. Mater. Inter. 8(27) (2016) 17226-17232.
[9] M.-G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing, Nature Mater. 10(5) (2011) 382-388.
[10] R. Chen, J. Lu, Z. Wang, Q. Zhou, M. Zheng, Microwave synthesis of Cu/Cu2O/SnO2 composite with improved photocatalytic ability using SnCl4 as a protector, J. Mater. Sci. 53(13) (2018) 9557-9566.
[11] B. Peng, S. Zhang, S. Yang, H. Wang, H. Yu, S. Zhang, F. Peng, Synthesis and characterization of g-C3N4/Cu2O composite catalyst with enhanced photocatalytic activity under visible light irradiation, Mater. Res. Bullet. 56 (2014) 19-24.
[12] T. Aditya, J. Jana, N.K. Singh, A. Pal, T. Pal, Remarkable facet selective reduction of 4-nitrophenol by morphologically tailored (111) faceted Cu2O nanocatalyst, ACS Omega 2(5) (2017) 1968-1984.
[13] A.K. Sasmal, S. Dutta, T. Pal, A ternary Cu2O–Cu–CuO nanocomposite: a catalyst with intriguing activity, Dalton Trans. 45(7) (2016) 3139-3150.
[14] H. Derikvandi, M. Vosough, A. Nezamzadeh-Ejhieh, A comprehensive study on the enhanced photocatlytic activity of a double-shell mesoporous plasmonic Cu@Cu2O/SiO2 as a visible-light driven nanophotocatalyst, Environ. Sci. Poll. Res. 27 (2020) 27582-27597.
[15] X. Zhao, Y. Li, Y. Guo, Y. Chen, Z. Su, P. Zhang, Coral‐like MoS2/Cu2O porous nanohybrid with dual‐electrocatalyst performances, Adv. Mater. Inter. 3(23) (2016) 1600658.
[16] W. Sang, G. Zhang, H. Lan, X. An, H. Liu, The effect of different exposed facets on the photoelectrocatalytic degradation of o-chlorophenol using p-type Cu2O crystals, Electrochim. Acta 231 (2017) 429-436.
[17] M. Wang, L. Sun, Z. Lin, J. Cai, K. Xie, C. Lin, p–n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities, Energ. Environ. Sci. 6(4) (2013) 1211-1220.
[18] Y.H. Chang, M.Y. Chiang, J.H. Chang, H.N. Lin, Enhanced visible light photocatalysis of cuprous oxide nanoparticle modified zinc oxide nanowires, Mater. Lett. 138 (2015) 85-88.
[19] W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?, Chem. Rev. 116(12) (2016) 7159-7329.
[20] C. Ye, J.X. Li, Z.J. Li, X.B. Li, X.B. Fan, L.P. Zhang, B. Chen, C.H. Tung, L.Z. Wu, Enhanced driving force and charge separation efficiency of protonated g-C3N4 for photocatalytic O2 evolution, ACS Catal. 5(11) (2015) 6973-6979.
[21] F. Bonaccorso, Z. Sun, T. Hasan, A. Ferrari, Graphene photonics and optoelectronics, Nature Photon. 4(9) (2010) 611-622.
[22] Z. Wu, Y. Huang, L. Xiao, D. Lin, Y. Yang, H. Wang, Y. Yang, D. Wu, H. Chen, Q. Zhang, Physical properties and structural characterization of starch/polyvinyl alcohol/graphene oxide composite films, Inter. J. Biolog. Macro. 123 (2019) 569-575.
[23] L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.J. Zhu, Focusing on luminescent graphene quantum dots: current status and future perspectives, Nanoscale 5(10) (2013) 4015-4039.
[24] M.H. Facure, R. Schneider, L.A. Mercante, D.S. Correa, A review on graphene quantum dots and their nanocomposites: from laboratory synthesis towards agricultural and environmental applications, Environ. Sci.: Nano 7(12) (2020) 3710-3734.
[25] S. Kumar, A. Dhiman, P. Sudhagar, V. Krishnan, ZnO-graphene quantum dots heterojunctions for natural sunlight-driven photocatalytic environmental remediation, Appl. Surf. Sci. 447 (2018) 802-815.
[26] A. Kalluri, D. Debnath, B. Dharmadhikari, P. Patra, Graphene quantum dots: synthesis and applications, Methods in enzymology 609 (2018) 335-354.
[27] C. Zhao, X. Song, Y. Liu, Y. Fu, L. Ye, N. Wang, F. Wang, L. Li, M. Mohammadniaei, M. Zhang, Synthesis of graphene quantum dots and their applications in drug delivery, J. Nanobiotech. 18(1) (2020) 1-32.
[28] L. Fang, Q. Xu, X. Zheng, W. Zhang, J. Zheng, M. Wu, W. Wu, Soy flour-derived carbon dots: facile preparation, fluorescence enhancement, and sensitive Fe3+ detection, J. Nanopart. Res. 18(8) (2016) 1-13.
[29] M. Batool, D. Hussain, A. Akrem, M. Najam-ul-Haq, S. Saeed, S.M. Zaka, M.S. Nawaz, F. Buck, Q. Saeed, Graphene quantum dots as cysteine protease nanocarriers against stored grain insect pests, Sci. Rep. 10(1) (2020) 1-11.
[30] Asar Ahmed, Namdeo S. Gajbhiye, Amish G. Joshi, Low cost, surfactant-less, one pot synthesis of Cu2O nano-octahedra at room temperature, J. Solid State Chem. 184 (2011) 2209–2214.
[31] W. Chen, D. Li, L. Tian, W. Xiang, T. Wang, W. Hu, Y. Hu, S. Chen, J. Chen, Z. Dai, Synthesis of graphene quantum dots from natural polymer starch for cell imaging, Green Chem. 20(19) (2018) 4438-4442.
[32] C.P. Deming, R. Mercado, V. Gadiraju, S.W. Sweeney, M. Khan, S. Chen, Graphene quantum dots-supported palladium nanoparticles for efficient electrocatalytic reduction of oxygen in alkaline media, ACS Sustain. Chem. Eng. 3(12) (2015) 3315-3323.
[33] D. Sun, R. Ban, P.H. Zhang, G.H. Wu, J.R. Zhang, J.J. Zhu, Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-co-doped carbon dots with tunable luminescence properties, Carbon 64 (2013) 424-434.
[34] J. Chen, Z. Long, S. Wang, Y. Meng, G. Zhang, S. Nie, Biodegradable blends of graphene quantum dots and thermoplastic starch with solid-state photoluminescent and conductive properties, Inter. J. Biological Macro. 139 (2019) 367-376.
[35] M. Vandana, S. Ashokkumar, H. Vijeth, L. Yesappa, H. Devendrappa, Synthesis and characterization of polypyrrole-graphene quantum dots nanocomposites for supercapacitor application, AIP Conference Proceedings, AIP Publishing LLC, 2019, p. 030535.
[36] W.C.J. Ho, Q. Tay, H. Qi, Z. Huang, J. Li, Z. Chen, Photocatalytic and adsorption performances of faceted cuprous oxide (Cu2O) particles for the removal of methyl orange (MO) from aqueous media, Molecules 22(4) (2017) 677.
[37] A. Norouzi, A. Nezamzadeh-Ejhieh, R. Fazaeli, A Copper (I) oxide-zinc oxide nano-catalyst hybrid: Brief characterization and study of the kinetic of its photodegradation and photomineralization activities toward methylene blue, Mater. Sci. Semiconduct. Process. 122 (2021) 105495.
[38] M. Kouti, L. Matouri, Fabrication of nanosized cuprous oxide using fehling's solution, Scientia Iranica 17(1) (2010) 73-78.
[39] Y. Guo, M. Dai, Z. Zhu, Y. Chen, H. He, T. Qin, Chitosan modified Cu2O nanoparticles with high catalytic activity for p-nitrophenol reduction, Appl. Surf. Sci. 480 (2019) 601-610.
[40] Chunhua Cao, Ling Xiao, Preparation and visible-light photocatalytic activity of Cu2O/PVA/Chitosan composite films, Adv. Mater. Res. 1015 (2014) 623-626.
[41] A. Wang, X. Li, Y. Zhao, W. Wu, J. Chen, H. Meng, Preparation and characterizations of Cu2O/reduced graphene oxide nanocomposites with high photo-catalytic performances, Powder Tech. 261 (2014) 42-48.
[42] M. Karimi-Shamsabadi, A. Nezamzadeh-Ejhieh, Comparative study on the increased photoactivity of coupled and supported manganese-silver oxides onto a natural zeolite nano-particles, J. Mol. Catal. A: Chem. 418 (2016) 103-114.
[43] M. Kasiri, H. Aleboyeh, A. Aleboyeh, Degradation of Acid Blue 74 using Fe-ZSM5 zeolite as a heterogeneous photo-Fenton catalyst, Appl. Catal. B: Environ. 84(1-2) (2008) 9-15.
[44] S. Senobari, A. Nezamzadeh-Ejhieh, A comprehensive study on the photocatalytic activity of coupled copper oxide-cadmium sulfide nanoparticles, Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy 196 (2018) 334-343.
[45] M.A. Rauf, M.A. Meetani, A. Khaleel, A. Ahmed, Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS, Chem. Eng. J. 157(2-3) (2010) 373-378.
[46] F. Huang, L. Chen, H. Wang, Z. Yan, Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma, Chem. Eng. J. 162(1) (2010) 250-256.
[47] A. Nezamzadeh-Ejhieh, S. Hushmandrad, Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst, Appl. Catal. A: General 388(1-2) (2010) 149-159.