A Nickel Sublayer: An Improvement in the Electrochemical Performance of Platinum-Based Electrocatalysts as Anodes in Glucose Alkaline Fuel Cells
Subject Areas : Iranian Journal of CatalysisBehnam Moeini 1 , Masoumeh Ghalkhani 2 , Tahereh G. Avval 3 , Matthew R. Linford 4 , Rasol Abdullah Mirzaie 5
1 - Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, Utah 84602, USA|Fuel Cell Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran
2 - Fuel Cell Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran
3 - Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, Utah 84602, USA
4 - Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, Utah 84602, USA
5 - Fuel Cell Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran
Keywords:
Abstract :
[1] D. Basu. S. Basu, A study on direct glucose and fructose alkaline fuel cell. Electrochim. Acta 55 (20) (2010) 5775–5779.
[2] G. Zang, W. Hao, X. Li, S. Huang, J. Gan, Z.Luo, Y. Zhang, Copper nanowires-MOFs-graphene oxide hybrid nanocomposite targeting glucose electro-oxidation in neutral medium. Electrochim. Acta 277 (2018) 176-184.
[3] A. Ehsani, M. Hadi, E. Kowsari, S. Doostikhah, J. Torabian, Electrocatalytic oxidation of ethanol on the surface of the POAP/ phosphoric acid-doped ionic liquid-functionalized graphene oxide nanocomposite film. Iranian J. Catal. 7(3) (2017) 187-192.
[4] M. H. Nobahari, A. Nozad Golikand, M. Bagherzadeh, Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation, Iranian J. Catal. 7(4) (2017) 327-335.
[5] S. Sohrabi, M. Ghalkhani, Metal–organic frameworks as electro-catalysts for oxygen reduction reaction in electrochemical technologies, J. Electronic Mater. 48 (2019) 4127-4137.
[6] J. O. Bockris, B. J. Piersma; Gileadi, E. Anodic oxidation of cellulose and lower carbohydrates. Electrochim. Acta 9 (10) (1964) 1329-1332.
[7] J. Chen, C. X. Zhao, M. M. Zhi, K. Wang, L. Deng, G. Xu, Alkaline direct oxidation glucose fuel cell system using silver/nickel foams as electrodes. Electrochim. Acta, 66 (2012) 133-138.
[8] I. V. Delidovich, B. L. Moroz, O. P.Taran, N. V. Gromov, P. A. Pyrjaev, I. P. Prosvirin, V. I. Bukhtiyarov, V. N. Parmon, Aerobic selective oxidation of glucose to gluconate catalyzed by Au/Al2O3 and Au/C: impact of the mass-transfer processes on the overall kinetics. Chem. Eng. J. 223 (2013) 921-931.
[9] El-Refaei, S. M.; Saleh, M. M.; Awad, M. I. Enhanced glucose electrooxidation at a binary catalyst of manganese and nickel oxides modified glassy carbon electrode. J. Power Sources 223 (2013) 125-128.
[10] A. Habrioux, K. Servat, T. Girardeau, P. Guérin, T. W. Napporn, K. B. Kokoh, Activity of sputtered gold particles layers towards glucose electrochemical oxidation in alkaline medium. Curr. Appl. Phys. 11 (5) (2011) 1149-1152.
[11] N. Arjona, M. Guerra-Balcazar, G. Trejo, J. Ledesma-Garcia, L. G. Arriaga, Electrochemical growth of au architectures on glassy carbon and their evaluation toward glucose oxidation reaction. New J. Chem., 36 (12) (2012) 2555-2561.
[12] D. Basu, S. Basu, Synthesis and characterization of Pt–Au/C catalyst for glucose electro-oxidation for the application in direct glucose fuel cell. Int. J. Hydrogen Energy, 36 (22) (2011) 14923-14929.
[13] D. Basu, S. Sood, S. Basu, Performance comparison of Pt–Au/C and Pt–Bi/C anode catalysts in batch and continuous direct glucose alkaline fuel cell. Chem. Eng. J. 228 (2013) 867-870.
[14] C. Jin, Z. Chen, Electrocatalytic oxidation of glucose on gold–platinum nanocomposite electrodes and platinum-modified gold electrodes. Synth. Met. 157 (13-15) (2007) 592-596.
[15] S. Kerzenmacher, U. Kräling, M. Schroeder , R. Brämer, R. Zengerle, F. von Stetten, Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: glucose-tolerant oxygen reduction cathodes. J. Power Sources, 195 (19) (2016) 6524-6531.
[16] A. Kloke, C. Kohler, R. Gerwig, R. Zengerle, S. Kerzenmacher, Cyclic electrodeposition of ptcu alloy: facile fabrication of highly porous platinum electrodes. Adv. Mater. 24 (21) 2012) 2916-2921.
[17] X. Yan, X. Ge, S. Cui, Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions. Nanoscale Res. Lett. 6 (1) (2011) 1-6.
[18] H. Zhang, N. Toshima, Glucose oxidation using au-containing bimetallic and trimetallic nanoparticles. Catal. Sci. Technol. 3 (2) (2013) 268-278.
[19] R. A. Mirzaie, B. Moeini, Study of type of electrolyte effect on platinum electro-catalyst performance prepared by cyclic voltammetry electrodeposition method for glucose oxidation reaction. MATTER Int. J. Sci. Technol. 1 (2015) 91-102.
[20] I. Taurino, G. Sanzó, F. Mazzei, G. Favero, G. De Micheli, S. Carrara, Fast synthesis of platinum nanopetals and nanospheres for highly-sensitive non-enzymatic detection of glucose and selective sensing of ions. Sci. Rep. 5 (1) (2015) 15277.
[21] D. W. Hwang, S. Lee, M. Seo, T. D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors – A Review. Anal. Chim. Acta, 1033 (2018) 1-34.
[22] T. Unmüssig, A. Weltin, S. Urban, P. Daubinger, G. A.Urban, J. Kieninger, Non-Enzymatic Glucose Sensing Based on Hierarchical Platinum Micro-/Nanostructures. J. Electroanal. Chem. 816 (2018) 215-222.
[23] M. Frei, J. Martin, S. Kindler, G. Cristiano, R. Zengerle, S. Kerzenmacher, Power supply for electronic contact lenses: abiotic glucose fuel cells vs. Mg/Air batteries. J. Power Sources, 401 (2018) 403-414.
[24] X. Tian, S. Lian, L. Zhao, X. Chen, Z. Huang, X. Chen, A novel electrochemiluminescence glucose biosensor based on platinum nanoflowers/graphene oxide/glucose oxidase modified glassy carbon electrode. J. Solid State Electrochem. 18 (9), (2014) 2375-2382.
[25] M. Frei, C. Köhler, L. Dietel, J. Martin, F. Wiedenmann, R. Zengerle, S. Kerzenmacher, Pulsed electrodeposition of highly porous pt alloys for use in methanol, formic acid, and glucose fuel cells. ChemElectroChem, 5 (7) (2018) 1013-1023.
[26] K. Abdul Razak, S. H. Neoh, N. S. Ridhuan, N. Mohamad Nor, Effect of platinum-nanodendrite modification on the glucose-sensing properties of a zinc-oxide-nanorod electrode. Appl. Surf. Sci., 380(2016) 32-39.
[27] N. Neha, B. S. R. Kouamé, T. Rafaïdeen, S. Baranton, C. Coutanceau, Remarkably efficient carbon-supported nanostructured platinum-bismuth catalysts for the selective electrooxidation of glucose and methyl-glucoside. Electrocatalysis 12 (2021) 1-14.
[28] K. A. Soliman, L. A. Kibler, D. M. Kolb, Electrocatalytic behaviour of epitaxial Ag(111) overlayers electrodeposited onto noble metals: electrooxidation of d-glucose. Electrocatalysis, 3 (3) (2012) 170-175.
[29] Q. Sheng, H. Mei, H. Wu, X. Zhang, S. Wang, PtxNi/C nanostructured composites fabricated by chemical reduction and their application in non-enzymatic glucose sensors. Sensors Actuators B Chem., 203 (2014) 588-595.
[30] C. Chen, R. Ran, Z. Yang, R. Lv, W. Shen, F. Kang, Z.H. Huang, An efficient flexible electrochemical glucose sensor based on carbon nanotubes/carbonized silk fabrics decorated with pt microspheres. Sensors Actuators B Chem., 256 (2018) 63-70.
[31] H. Shi, S. Zhou, X. Feng, H. Huang, Y. Guo, W. Song, Titanate nanotube forest/CuxO nanocube hybrid for glucose electro-oxidation and determination. Sens. Actuators B: Chem. 190 (2014) 389-397.
[32] L. Parashuram, S. Sreenivasa, S. Akshatha, V. Udayakumar, Sandeep Kumar, S. A non-enzymatic electrochemical sensor based on ZrO2: Cu (I) nanosphere modified carbon paste electrode for electro-catalytic oxidative detection of glucose in raw Citrus aurantium var. sinensis. Food Chem. 300 (2019) 125178.
[33] Y. Gu, H. Yang, B. Li, J. Mao, Y. An, A ternary nanooxide NiO-TiO2-ZrO2/SO42- as efficient solid superacid catalysts for electro-oxidation of glucose. Electrochim. Acta 194 (2016) 367-376.
[34] F. Alidusty, A. Nezamzadeh-Ejhieh. Considerable decrease in overvoltage of electrocatalytic oxidation of methanol by modification of carbon paste electrode with Cobalt (II)-clinoptilolite nanoparticles. Inter. J. Hydrogen Energy 41 (2016) 8881-8892.
[35] A. Ahmadi, A. Nezamzadeh-Ejhieh, A comprehensive study on electrocatalytic current of urea oxidation by modified carbon paste electrode with Ni (II)-clinoptilolite nanoparticles: Experimental design by response surface methodology. J. Electroanal. Chem. 801 (2017) 328-337.
[36] M. S. Tohidi, A. Nezamzadeh-Ejhieh. A simple, cheap and effective methanol electrocatalyst based of Mn (II)-exchanged clinoptilolite nanoparticles. Inter. J. Hydrogen Energy 41 (2016) 6288-6299.
[37] R. A. Mirzaie, F. Hamedi, Introducing Pt/ZnO as a new non carbon substrate electro catalyst for oxygen reduction reaction at low temperature acidic fuel cells. Iranian J. Catal. 5(3) (2015) 275-283.
[38] G. A. B. Melloa, W. Cheuquepán, V. Briega-Martos, M. J. Feliu, Glucose electro-oxidation on Pt (100) in phosphate buffer solution (pH 7): A mechanistic study. Electrochim. Acta, 354 (2020) 136765.
[39] M. Fleischmann, K. Korinek, D. Pletcher, The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes. J.Chem. Soc. Perkin Trans.2, (10) (1972) 1396-1403.
[40] G. Yang, E. Liu, N. W. Khun, S. P. Jiang, Direct electrochemical response of glucose at nickel-doped diamond like carbon thin film electrodes. J. Electroanal. Chem. 627 (1–2) (2009) 51-57.
[41] M. A. Al-Omair, A. H. Touny, F. A. Al-Odail, M. M. Saleh, Electrocatalytic oxidation of glucose at nickel phosphate nano/micro particles modified electrode. Electrocatalysis 8 (4) (2017) 340-350.
[42] H. Gharibi, R. A. Mirzaie, E. Shams, M. Zhiani, M. Khairmand, preparation of platinum electrocatalysts using carbon supports for oxygen reduction at a gas-diffusion electrode. J. Power Sources, 139 (1-2) (2005) 61-66.
[43] M. Pasta, L. Hu, F. La Mantia, Y. Cui, Electrodeposited gold nanoparticles on carbon nanotube-textile: anode material for glucose alkaline fuel cells. Electrochem. commun. 19 (2012) 81-84.
[44] S. Prilutsky, P. Schechner, E. Bubis, V. Makarov, E. Zussman, Y. Cohen, anodes for glucose fuel cells based on carbonized nanofibers with embedded carbon nanotubes. Electrochim. Acta, 55 (11), (2010) 3694-3702.
[45] M. Shamsipur, M. Najafi, M. R. M. Hosseini, Highly improved electrooxidation of glucose at a nickel (ii) oxide/multi-walled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry, 77 (2) (2010) 120-124.
[46] H. Zhang, F. Jiang, R. Zhou, Y. Du, P.Yang, C. Wang, J. Xu, Effect of deposition potential on the structure and electrocatalytic behavior of Pt micro/nanoparticles. Int. J. Hydrogen Energy, 36 (23) (2011) 15052-15059.
[47] D. A. Shirley, High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 5 (12) (1972) 4709-4714.
[48] V. Jain, M. C. Biesinger, M. R. Linford, The gaussian-lorentzian sum, product, and convolution (Voigt) functions in the context of peak fitting X-Ray photoelectron spectroscopy (XPS) narrow scans. Appl. Surf. Sci. 447 (2018) 548-553.
[49] E. Willinger, A. Tarasov, R. Blume, A. Rinaldi, O. Timpe, C. Massué, M. Scherzer, J. Noack, R. Schlögl, M. G. Willinger, Characterization of the platinum–carbon interface for electrochemical applications. ACS Catal. 7(7) (2017) 4395-4407.
[50] G. Moggia, T. Kenis, N. Daems, T. Breugelmans, Electrochemical oxidation of d-glucose in alkaline medium: impact of oxidation potential and chemical side reactions on the selectivity to d-gluconic and d-glucaric acid. ChemElectroChem, 7 (1) (2020)86-95.
[51] M. H. Sheikh-Mohseni, A. Nezamzadeh-Ejhieh, Modification of carbon paste electrode with ni-clinoptilolite nanoparticles for electrocatalytic oxidation of methanol. Electrochim. Acta, 147 (2014) 572-581.
[52] T. Tamiji, A. Nezamzadeh-Ejhieh, Electrocatalytic determination of Hg (II) by the modified carbon paste electrode with Sn (IV)-clinoptilolite nanoparticles. Electrocatalysis 10 (5) (2019)466-476.
[53] T. Tamiji, A. Nezamzadeh-EjhiehA comprehensive kinetic study on the electrocatalytic oxidation of propanols in aqueous solution, Solid State Sci. 98 (2019) 106033.
[54] L. J. Z. Wang, X. He, J. Gao, J. Li, C. Wan, Ch. Jing. Electrochemical impedance ipectroscopy (EIS) Study of LiNi1/3Co1/3Mn1/3O2 for Li-Ion Batteries. Int. J. Electrochem. Sci. 7 (1) (2012) 345-353.