Thermal regeneration and decoking optimization of chlorinated platinum/alumina catalysts for the isomerization process
Subject Areas : Iranian Journal of Catalysis
1 - Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran.
Keywords:
Abstract :
[1] J. Hidalgo, M. Zbuzek, R. Černý, P. Jíša, Open Chem. 12 (2014) 1–13.
[2] F. Garin, S. Aeiyach, P. Legare, G. Maire, J. Catal. 77 (1982) 323–337.
[3] M. P. Lapinski, S. Metro, P. R. Pujadó, M. Moser, Catalytic Reforming in Petroleum Processing, in Handbook of Petroleum Processing, Springer International Publishing, 2015, 229–260.
[4] A. Manasilp, E. Gulari, Appl. Catal. B 37 (2002) 17–25.
[5] F. Jiang, L. Zeng, S. Li, G. Liu, S. Wang, J. Gong, ACS Catal. 5 (2015) 438–447.
[6] R. W. Maatman, P. Mahaffy, P. Hoekstra, C. Addink, J. Catal. 23 (1971) 105–118.
[7] C. Corolleur, J. Catal. 24 (1972) 385-400.
[8] F. Aberuagba, React. Kinet. Catal. Lett. 70 (2000) 243–249.
[9] J. Beltramini, D. L. Trimm, Appl. Catal. 31 (1987) 113-118.
[10] M. Bhasin, J. McCain, B. Vora, T. Imai, P. Pujadó, Appl. Catal. A 221 (2001) 397–419.
[11] D. Mei, J. H. Kwak, J. Hu, S. J. Cho, J. Szanyi, L. F. Allard, C. H. F. Peden, J. Phys. Chem. Lett. 1 (2010) 2688–2691.
[12] J. Moulijn, A. van Diepen, F. Kapteijn, Appl. Catal. A 212 (2001) 3–16.
[13] Z. Sarbak, in: E. G. Derouane, V. Parmon, F. Lemos, F. Ramôa Ribeiro, (Eds.), Coke formation on alumina and alumina supported platinum catalysts, in sustainable strategies for the upgrading of natural Gas: fundamentals, challenges, and opportunities, Springer-Verlag, Berlin, 2005, pp. 359–364.
[14] Y. M. Zhorov, L. A. Ostrer, Chem. Technol. Fuels Oils. 26 (1990) 226–229.
[15] A. G. Gayubo, F. J. Lorens, E. A. Cepeda, J. Bilbao, Ind. Eng. Chem. Res. 36 (1997) 5189–5195.
[16] M. Argyle, C. Bartholomew, Catalysts 5 (2015) 145–269.
[17] F. Le Normand, A. Borgna, T. F. Garetto, C. R. Apesteguia, B. Moraweck, J. Phys. Chem. 100 (1996) 9068–9076.
[18] B. B. Zharkov, V. L. Medzhinskii, L. F. Butochnikova, O. M. Oranskaya, V. B. Maryshev, Chem. Technol. Fuels Oils. 24 (1988) 157–159.
[19] T. F. Garetto, C. R. Apesteguia, Appl. Catal. 20 (1986) 133–143.
[20] M. S. Zanuttini, M. A. Peralta, C. A. Querini, Ind. Eng. Ch em. Res. 54 (2015) 4929–4939.
[21] J. Barbier, Appl. Catal. 23 (1986) 225–243.
[22] A. Y. León, N. A. Rodríguez, E. Mejía, R. Cabanzo, J. Phys. Conf. Ser. 687 (2016) 012092.
[23] T. Sato, K. Kunimatsu, M. Watanabe, H. Uchida, J. Nanosci. Nanotechnol. 11 (2011) 5123–5130.
[24] K. Koichumanova, K. B. Sai Sankar Gupta, L. Lefferts, B. L. Mojet, K. Seshan, Phys. Chem. Chem. Phys. 17 (2015) 23795–23804.
[25] I. Ortiz-Hernandez, D. Jason Owens, M. R. Strunk, C. T. Williams, Langmuir 22 (2006) 2629–2639.
[26] H. Gao, Appl. Surf. Sci. 379 (2016) 347–357.
[27] G. J. Arteaga, J. A. Anderson, C. H. Rochester, Catal. Lett. 8 (1999) 189–194.
[28] P. Bazin, O. Saur, J. C. Lavalley, M. Daturi, G. Blanchard, Phys. Chem. Chem. Phys. 7 (2005) 187-194.
[29] M. Mihaylov, K. Chakarova, K. Hadjiivanov, O. Marie, M. Daturi, Langmuir 21 (2005) 11821–11828.
[30] K. Chakarova, M. Mihaylov, K. Hadjiivanov, Microporous Mesoporous Mater. 81 (2005) 305–312.
[31] T. Chafik, O. Dulaurent, J. L. Gass, D. Bianchi, J. Catal. 179 (1998) 503–514.
[32] S. David Jackson, N. Hussain, A. Shona Munro, J. Chem. Soc. Faraday Trans. 94 (1998) 955–961.
[33] F. J. Rivera-Latas, R. A. D. Betta, M. Boudart, AIChE J. 38 (1992) 771–780.
[34] N. S. Nesterenko, A. V. Avdey, A. Y. Ermilov, Int. J. Quantum Chem. 106 (2006) 2281–2289.
[35] H. Seo, J. K. Lee, U. G. Hong, G. Park, Y. Yoo, J. Lee, H. Chang, I. K. Song, Catal. Commun. 47 (2014) 22–27.
[36] H. M. Gobara, R. S. Mohamed, F. H. Khalil, M. S. El-Shall, S. A. Hassan, Egypt. J. Pet. 23 (2014) 105–118.
[37] G. Wang, J. Zhang, J. Shao, H. Ssun, H. Zuo, J. Iron Steel Res. Int. 21 (2014) 897–904.
[38] S. Lowell, J. E. Shields, Powder Surface Area and Porosity, Springer, Netherlands, 1991.
[39] M. Naderi, "Surface Area: Brunauer–Emmett–Teller (BET)." Progress in filtration and separation. Academic Press, 2015, pp. 585-608.
[40] X. Liu, Y. Guo, W. Xu, Y. Wang, X. Gong, Y. Guo, G. Lu, Kinet. Catal. 52 (2011) 817–822.
[41] J. O. Alben, F. G. Fiamingo, Fourier Transform Infrared Spectroscopy, Academic, New York, 1984, pp. 133–179.
[42] D. C. Harris, M. D. Bertolucci, Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy, Dover, 1978.
[43] R. Mehrotra, Infrared Spectroscopy, Gas Chromatography/Infrared in Food Analysis, in Encyclopedia of Analytical Chemistry, Chichester, UK, John Wiley & Sons, 2000.
[44] Z. Wu, Y. Zhao, J. Zhang, Y. Wang, Molecules 22 (2017) Article ID 1238.
[45] M. Morita, A. Yasuhara, Electron microscope and elemental mapping image generation method, US Pat. (2017) 9627175B2.
[46] D. L. Pavia, G. M. Lampman, G. S. Kriz, J. A. Vyvyan, Introduction to Spectroscopy, Cengage Learning, 2008.
[47] B. E. Obinaju, F. L. Martin, Environ. Int. 89–90 (2016) 93–101.
[48] J. Coates, Interpretation of Infrared Spectra, A Practical Approach, in Encyclopedia of Analytical Chemistry, Chichester, John Wiley & Sons, 2006.
[49] S. Alexander, V. Gomez, A. R. Barron, J. Nanomater. 2 (2016) 1–8.
[50] S. D. Ebbesen, B. L. Mojet, L. Lefferts, Langmuir 24 (2008) 869–879.
[51] D. Ferri, T. Bürgi, A. Baiker, J. Phys. Chem. B 105 (2001) 3187–3195.
[52] F. Yaripour, Z. Shariatinia, S. Sahebdelfar, A. Irandoukht, Fuel 139 (2015) 40–50.
[53] D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, Incorporated, 2017.
[54] D. L. Trimm, Introduction to Catalyst Deactivation, in J. L. Figueiredo (ed.), Progress in Catalyst Deactivation, Martinus Nijhoff Publishers, The Hague, 1982, pp. 3–22.