Introducing Pt/ZnO as a new non carbon substrate electro catalyst for oxygen reduction reaction at low temperature acidic fuel cells
Subject Areas : Iranian Journal of CatalysisRasol Abdullah Mirzaie 1 , Fatemeh Hamedi 2
1 - Fuel Cell Research Laboratory, Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
2 - Fuel Cell Research Laboratory, Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
Keywords:
Abstract :
[1] H. Zhu, M. Luo, S. Zhang, L. Wei, F. Wang, Z. Wang, Y. Wei, K. Han, Int. J. Hydrogen Energy 38 (2013) 3323-3329.
[2] S.M Andersen, M. Borghei, P. Lund, Y. Elina, A. Pasanen, E. Kauppinen, V. Ruiz, P. Kauranen, E.M. Skou, Solid State Ionics 231 (2013) 94–101.
[3] B.N. Popov, X. Li, G. Liu, J.W. Lee, Int. J. Hydrogen Energy 36 (2011) 1794-1802.
Fig. 8. Electrochemical active surface area as a function of cycle numbers on Pt/ZnO/SWCNT 30wt.% and commercial Pt/C (20wt.%) electrodes.
Table 2. Comparison of prepared electrodes (commercial Pt/C (20wt.%) and Pt/ZnO/SWCNT 30wt.%)for catalyst degradation.
Catalyst ECSA (m2/gPt)
Initial After 1200 cycles
Pt/C commercial wt.20% 84.21 31
Pt/ZnO/SWCNT 30wt.% 46.79 37.97
[4] W. Song, H. Yu, L. Hao, Z. Miao, B. Yi, Z. Shao, Solid State Ionics 181 (2010) 453–458.
[5] B. Zhao, L. Sun, R. Ran, Z. Shao, Solid State Ionics 262 (2014) 313–318.
[6] B. Li, Z. Yan, D.C. Higgins, D. Yang, Z. Chen, J. Ma, J. Power Sources 262 (2014) 488-493.
[7] H. Zhang, P.K. Shen, Chem. Soc. Rev. 41 (2012) 2382-2394.
[8] J. Bai, Q. Zhu, Z. Lv, H. Dong , J. Yu, L. Dong, Int. J. Hydrogen Energy 38 (2013) 1413-1418.
[9] A. Maghsodi, M.R. Milani Hoseini, M. Dehghani Mobarakeh, M. Kheirmand, L. Samiee, F. Shoghi, M. Kameli, Appl. Surf. Sci. 257 (2011) 6353–6357
[10] H.H. Wang, Z.Y. Zhou, Q. Yuan, N. Tian, S.G. Sun, Chem. Commun. 47 (2011) 3407–3409.
[11] M.S. saha, Y. Zhang, M. Cai, X. Sun, Int. J. Hydrogen Energy 37 (2012) 4633-4632.
[12] C.H. Chang, T.S. Yuen, Y. Nagao, H. Yugami, Solid State Ionics 197 (2011) 49–51.
[13] I. Gatto, A. Stassi, E. Passalacqua, A.S. Arico, Int. J. Hydrogen Energy 38 (2013) 675-681.
[14] L-R. Yang, D-S. Tsai, Y-S. Chao, W-H. Chung, D.P. Wilkinson, Int. J. Hydrogen Energy 36 (2011) 7381-7390.
[15] R. Wang, X. Li, H. Li, Q. Wang, H. Wang, W. Wang, J. Kang, Y. Chang, Z. Lei, Int. J. Hydrogen Energy 36 (2011) 5775-5781.
[16] K-S. Lee, C. Jang, D. Kim, H. Ju, T-w. Hong, W. Kim, D. Kim, Solid State Ionics 225 (2012) 395–397.
[17] S.S. Jyothirmayee, S. Ramaprabhu, ACS Appl. Mater. Interfaces 4 (2012) 3805−3810.
[18] N.M. Markovic, P.N. Ross, Surf. Sci. Rep. 45 (2002) 117-229.
[19] Y. Lin, X, Cui, C. Yen, C.M. Wai, J. Phys. Chem. B 109 (2005) 14410 14415.
[20] S.G. Sharma, B. Pollet, J. Power Sources 208 (2012) 96-119.
[21] B. Avasarala, P. Haldar, Int. J. Hydrogen Energy 36 (2 0 1 1) 3965-3974.
[22] S. Yin, S. Mu, M. Pan, Z. Fu, J. Power Sources 196 (2011) 7931– 7936.
[23] S.V. Kraemer, K. Wikander, G. Lindbergh, A. Lundblada, A.E.C. Palmqvist, J. Power Sources 180 (2008)185-190.
[24] T. Ioroi, Z. Siroma, N. Fujiwara, S.I. Yamazaki, K. Yasuda, Electrochem. Commun. 7 (2005) 183-188.
[25] G. Chen, C.C. Waraksa, H. Cho, D.D. Macdonald, T.E. Mallouka, J. Electrochem. Soc. 150 (2003) E423-E428.
[26] L. Timperman, A. Lewera, W. Vogel, N. Alonso-Vante, Electrochem. Commun. 12 (2010) 1772-1775.
[27] K.W. Park, K.S.Seol, Electrochem. Commun. 9 (2007) 2256–2260.
[28] B. Seger, A. Kongkanand, K. Vinodgopal, P.V. Kamat, J. Electroanal. Chem. 621 (2008) 198-204.
[29] K. Sasaki, L. Zhang, R. Adzic, Phys. Chem. Chem. Phys. 10 (2008) 159-167.
[30] M. Dou, M. Hou, D. Liang, W. Lu, Z. Shao, B. Yi, Electrochim. Acta 92 (2013) 468– 473.
[31] S.A. Jina, K. Kwon, C. Pak, H. Chang, Catal. Today 164 (2011) 176–180.
[32] J. Shim, C.R. Lee, H.K. Lee, J.S. Lee, E.J. Cairns, J. Power Sources 102 (2001) 172-177.
[33] H. Chhina, S. Campbell, O, Kesler, J. Electrochem. Soc. 154 (2007) B533–B539.
[34] M.S. Saha, M.N. Banis, Y. Zhang, R. Li, X. Sun, M. Cai, F.T. Wagner, J. Power Sources 192 (2009) 330-
335.
[35] B.R. Camacho, C. Morais, M.A. Valenzuela, N. Alonso-Vante, Catal. Today 202 (2013) 36-43.
[36] S.J. Tauster , S.C. Fung, R.L. Garten, J. Am. Chem. Soc 100 (1978) 170-175.
[37] X.-Z. yuan, H. wang, PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications, in: J. Zhang (Ed.), PEM Fuel Cell Fundamentals, Springer, Vancouver, Canada, 2008, pp. 89-134.
[38] J.A. Schwarz, C. Contescu, A. Contescu, Chem. Rev. 95 (1995) 477-510.
[39] R. Abdullah Mirzaie, F. Kamrani, A. Anaraki Firooz, A.A. Khodadadi, Mater. Chem. Phys. 133 (2012) 311-316.
[40] E.V. Ramos-Fernandez, A. Sepulveda -Escribano, F. Rodrıguez-Reinoso, Catal. Commun. 9 (2008)1243-1246.
[41] N. Tamaekong, C. Liewhiran, A. Wisitsoraat, S. Phanichphant, Sensor. Actuat B: Chem. 152 (2011) 155–161.
[42] M. Consonni, D. Jokic, D.Y. Murzin, R. Touroude, J. Catal. 188 (1999) 165–175.
[43] M. Ohta, Y. Ikeda, A. Igarashi, Appl. Catal. A 258 (2004) 153–158.
[44] S.K. Mishra, R.K. Srivastava, S.G. Prakash, J. Alloy. Compd. 539 (2012) 1–6.
[45] W. Trongchuankij, K. Pruksathorn, M. Hunsom, Appl. Energy 88 (2011) 974-980.
[46] B. Cullity, S. Stock, Elements of X-ray Diffraction, Addison-Wesley Reading, MA, 1978.
[47] C. Jeffree, N.D Read, "Ambient- and Low-temperature scanning electron microscopy". In Hall, J. L. and Hawes, C. R. Electron Microscopy of Plant Cells. London: Academic Press. (1991) 313–413.
[48] W. Zhang, J. Chen, G.F. Swiegers, Z-F. Ma, G.G. Wallace. Nanoscale 2 (2010) 282–286.
[49] A. Pozio, M.D. Francesco, A. Cemmi, F. Cardellini, L. Giorgi, J. Power Sources 105 (2002) 13–19.
[50] S. Cruz-Manzo, R. Chen, P. Rama, Int. J. Hydrogen Energy 38 (2013) 1702-1713.
[51] G. Chen, C.C. Waraksa, H. Cho, D.D. Macdonald, T.E. Mallouka, J. Electrochem. Soc. 150 (2003) E423-E428.
[52] S. Talam, S.R. Karumuri, N.Gunnam. ISRN Nanotechnology 372505 (2012) 1-6.
[53] J. Wang, G. Yin, Y. Shao, S. Zhang, Z. Wang, Y. Ga, J. Power Sources 171 (2007) 331–339.