• فهرس المقالات thermodynamics parameters

      • حرية الوصول المقاله

        1 - Theoretical study of 2,3,7,8-tetrachlorodibenzo-para-dioxine removal by boron nitride-nanotube (BNNT): QSAR, IR-DFT
        L. Mahdavian
        The study examined corrosion inhibition of corrosion inhibition of 5-methyl-2H-imidazol-4-carboxaldehyde and 1H-Indole-3-carboxaldehyde on mild steel in acidic medium using weight loss and Density Functional Theory (DFT) methods. DFT calculations were carried out at B3L أکثر
        The study examined corrosion inhibition of corrosion inhibition of 5-methyl-2H-imidazol-4-carboxaldehyde and 1H-Indole-3-carboxaldehyde on mild steel in acidic medium using weight loss and Density Functional Theory (DFT) methods. DFT calculations were carried out at B3LYP/6-31+G** level of theory in aqueous medium on the molecular structures to describe electronic parameters. The values of thermodynamic parameters such as free energy of adsorption (ΔGºads), adsorption equilibrium constant (Kads), adsorption entropy (ΔSºads), adsorption enthalpy (ΔHºads) and activation energy (Ea) were calculated, analyzed and discussed. The adsorption process on mild steel surface showed that 4-methylimidazol-5-carboxaldehyde and Indole-3-carboxaldehyde obeyed Freundlich and Temkin adsorption isotherms respectively. Also, the molecular parameters associated with inhibition efficiency such as EHOMO, ELUMO, band gap energy (ELUMO- EHOMO), softness (S), electron affinity (EA) and number of electrons transfer were calculated. The higher inhibitory property of 5-methyl-2H-imidazol-4-carboxaldehyde was attributed to the presence of higher number of protonation sites as a result of higher number of nitrogen atoms, increase in number of plane protonated species and higher net charges on the ring atoms. تفاصيل المقالة
      • حرية الوصول المقاله

        2 - Adsorption of phosgene on Al12N12 nanocluster: Quantum chemical study
        A Amiri Reza Ghiasi Karim Zare Reza Fazaeli
        This study investigated the adsorption of phosgene gas on Al12N12 nano-cluster with using CAM-B3LYP functional. Six possible isomers of the interaction between Al12N12 nano-cluster and phosgene were considered. The interactions between nano-cluster and phosgene were exa أکثر
        This study investigated the adsorption of phosgene gas on Al12N12 nano-cluster with using CAM-B3LYP functional. Six possible isomers of the interaction between Al12N12 nano-cluster and phosgene were considered. The interactions between nano-cluster and phosgene were examined through energy decomposition analysis (EDA). Charge transfer between fragments were illustrated with electrophilicity-based charge transfer (ECT). Thermodynamics parameters of the interaction between of nano-cluster and phosgene gas were calculated. The temperature and pressure effects on the thermodynamic parameters were illustrated.Computational investigation of the adsorption behavior of phosgene on Al12N12 cage revealed e-isomer was most stable isomer in between the studied isomers. The calculated Ecoh values showed that e-isomer was most stable isomers. The larger HOMO-LUMO gap value in the e-isomer of Al12N12… COCl2 rather than Al12N12 cage showed that COCl2 adsorption meaningfully increase this value. Therefore, we believe that the Al12N12 may be a suitable nanoscale carrier for COCl2 gas. The positive value of ECT revealed charge flow from Al12N12 to COCl2 gas. Thermodynamics analysis showed that easy adsorption under lower temperature and higher pressure. تفاصيل المقالة
      • حرية الوصول المقاله

        3 - Quantum chemical study of the adsorption of phosgene on Al12N12 nano-cluster
        Asma Amiri Reza Ghiasi Karim Zare Reza Fazaeli
        This study investigated the adsorption of phosgene gas on Al12N12 nanoclusterusing CAM-B3LYP functional. Six possible isomers of the interaction betweenAl12N12 nanocluster and phosgene were considered. The interactions betweennanocluster and phosgene were examined throu أکثر
        This study investigated the adsorption of phosgene gas on Al12N12 nanoclusterusing CAM-B3LYP functional. Six possible isomers of the interaction betweenAl12N12 nanocluster and phosgene were considered. The interactions betweennanocluster and phosgene were examined through energy decomposition analysis(EDA). Charge transfer between fragments was illustrated with, electrophilicitybasedcharge transfer (ECT). Thermodynamics parameters of the interactionbetween nanocluster and phosgene gas were calculated. The temperature andpressure effects on the thermodynamic parameters were illustrated. تفاصيل المقالة