• فهرس المقالات epitope prediction

      • حرية الوصول المقاله

        1 - In Silico Prediction of B-Cell and T-Cell Epitopes of Protective Antigen of <i>Bacillus anthracis</i> in Development of Vaccines Against Anthrax
        م. طهمورث‌پور ن. نظیفی ز. پیرخضرانیان
        Protective antigen (PA), a subunit of anthrax toxin from Bacillus anthracis, is known as a dominant component in subunit vaccines in protection against anthrax. In order to avoid the side effects of live attenuated and killed organisms, the use of linear neutralizing ep أکثر
        Protective antigen (PA), a subunit of anthrax toxin from Bacillus anthracis, is known as a dominant component in subunit vaccines in protection against anthrax. In order to avoid the side effects of live attenuated and killed organisms, the use of linear neutralizing epitopes of PA is recommended in order to design recombinant vaccines. The present study is aimed at determining the dominant epitopes based on multi-parameter and multi-method analysis. The epitopes were identified by the well-known online bioinformatics server and then they were selected and compared based on the highest score and the highest repetition rate. Further analysis on predicted epitopes has been carried out by online VaxiJen 2.0 and Protein Digest server. Among the selected epitopes, those with the highest antigenicity score (&gt;0.9 threshold) and less susceptibility to gastrointestinal tract proteases, were selected as final epitopes. Final B-cell predicted epitopes were amino acid residues 292-308, 507-521 and 706-719; residues 17-31, 315-329 and 385-400 which were determined as the best major histocompatibility complex I (MHCI) class of T-cells epitopes; in addition, residues 455-464 and 661-669 were also considered the best MCHII class of T-cells epitopes. Since random coil structure had a high probability of protein forming of antigenic epitope, the results of secondary structure analysis of the final PA epitopes have shown that all these epitopes form a 100% random coil structure. تفاصيل المقالة
      • حرية الوصول المقاله

        2 - B and T-Cell Epitope Prediction of the OMP25 Antigen for Developing <i>Brucella melitensis</i> Vaccines for Sheep
        س. یوسفی م. طهمورث‌پور م.ه. سخاوتی
        Brucellosis, produced by Brucella species, is a disease that causes severe economic losses for livestock farms worldwide Due to serious economic and medical consequences of this disease, many efforts have been made to prevent the infection through the use of recombinant أکثر
        Brucellosis, produced by Brucella species, is a disease that causes severe economic losses for livestock farms worldwide Due to serious economic and medical consequences of this disease, many efforts have been made to prevent the infection through the use of recombinant vaccines based on Brucella outer membrane protein (OMP) antigens. In the present study, a wide range of on-line prediction software was used to predict B and T-cells epitopes, secondary and tertiary structure and antigenicity OMP25 antigens. The bioinformatics approach used in the present study was validated by comparing its results with four available experimental epitope predictions. Bioinformatics analysis identified B-cell epitopes locations at amino acid (AA) residues 26-44, 59-79, 88-112, 146-166 and 175-202l and T-cell epitopes at AA residues 1-10, 14-22, 122-132, 154-162 and 206-213. All final B and T-cell predicted epitopes, except 1-10 and 14-22 residuals, showed antigenicity ability. Finally, a common B and T-cell epitope was identified at 154-162 of the OMP25 antigen. Bioinformatics analysis showed that this region has proper epitope characterization and so may be useful for producing recombinant vaccine. تفاصيل المقالة