• فهرس المقالات Wear Scar Diameter

      • حرية الوصول المقاله

        1 - Assessment the Wear Properties of Biodiesel-diesel Blends with the Addition of Copper Oxide Nanoparticles
        Hossein Khorshidnia Alireza Shirneshan
        Normal lubricants such as petroleum, coals or natural gases are limited and will keep depleting due to high fuel consumption all over the world; so nano-lubricants can be considered as the alternatives. In the present study, copper oxide nanoparticles were mixed with bi أکثر
        Normal lubricants such as petroleum, coals or natural gases are limited and will keep depleting due to high fuel consumption all over the world; so nano-lubricants can be considered as the alternatives. In the present study, copper oxide nanoparticles were mixed with biodiesel-diesel blends to evaluate the wear properties of the mixture by 4-ball wear tribo-tester. CuO nanoparticles (25, 50 and 75 ppm) were dispersed in B10, B20, and B50 blends. The results showed that with increasing the CuO nanoparticle fraction up to 50 ppm in the fuel blend, the wear scar diameter (WSD) decreased. Also, the results indicated that using copper oxide nanoparticles with a dosage of 75 ppm in the fuel blend causes a higher WSD compared with 50 ppm dosage. Based on the results, the scratches and roughness on the surface also decreased with an increase of biodiesel concentration and addition of nanoparticles up to 50 ppm in the fuel mixture. تفاصيل المقالة