• فهرس المقالات Stress intensity factors

      • حرية الوصول المقاله

        1 - Photoelastic Determination of Mixed Mode Stress Intensity Factors
        V.K Singh P.C Gope
        A two dimensional finite model with inclined crack at different crack angles are being analyzed in mixed mode condition using photo elasticity method for the determination of Stress Intensity Factors. The well-known Sih’s equation and three points deterministic ap أکثر
        A two dimensional finite model with inclined crack at different crack angles are being analyzed in mixed mode condition using photo elasticity method for the determination of Stress Intensity Factors. The well-known Sih’s equation and three points deterministic approach is used for the determination of stress intensity factors. The effects of biaxial load factor, crack angle, size factors were studied and a regression model was developed for geometry correction to predict Stress Intensity Factors. The results give a good compromise to the theoretical one. The experimental result also gives significant data for the two dimensional mixed mode loading conditions. تفاصيل المقالة
      • حرية الوصول المقاله

        2 - Thermoelastic Fracture Parameters for Anisotropic Plates
        S Kebdani A Sahli S Sahli
        This paper deals with the determination of the effect of varying material properties on the value of the stress intensity factors, KI and KII, for anisotropic plates containing cracks and subjected to a temperature change. Problems involving cracks and body forces, as w أکثر
        This paper deals with the determination of the effect of varying material properties on the value of the stress intensity factors, KI and KII, for anisotropic plates containing cracks and subjected to a temperature change. Problems involving cracks and body forces, as well as thermal loads are analysed. The quadratic isoperimetric element formulation is utilized, and SIFs may be directly obtained using the ‘traction formula’ and the ‘displacement formula’. Three cracked plate geometries are considered in this study, namely: (1) a plate with an edge-crack; (2) a plate with a double edge-crack; (3) a plate with symmetric cracks emanating from a central hole. Where appropriate, finite element method (FEM) analyses are also performed in order to validate the results of the BEM analysis. The results of this study show that, for all crack geometries, the mode-I stress intensity factor, K∗I decreases as the anisotropy of the material properties is increased. Additionally, for all these cases, K∗I decreases as the angle of orientation of the material properties, , increases with respect to the horizontal axis. The results also show that BEM is an accurate and efficient method for two-dimensional thermoelastic fracture mechanics analysis of cracked anisotropic bodies. تفاصيل المقالة
      • حرية الوصول المقاله

        3 - Fracture analysis of multiple axisymmetric interfacial cracks in an FGM Coated orthotropic layer
        Behrooz Momeni
        Based on the distributed dislocation technique, an analytical solution for the orthotropic layer with functionally graded material (FGM) orthotropic coating containing multiple axisymmetric interfacial cracks subjected to torsional loading is investigated. It is assumed أکثر
        Based on the distributed dislocation technique, an analytical solution for the orthotropic layer with functionally graded material (FGM) orthotropic coating containing multiple axisymmetric interfacial cracks subjected to torsional loading is investigated. It is assumed that the material properties of the FGM orthotropic coating vary power-law form along the thickness of the layer. At first, by using the Hankel transform, the solution for Somigliana type rotational ring dislocation in the layer and its coating is obtained. Then, the dislocation solution is used to derive a set of singular integral equations for a system of coaxial axisymmetric interface cracks, including penny-shaped and annular cracks. cracks with Cauchy type kernel. The integral equations are of Cauchy singular type, which are solved by Erdogan’s collocation method for dislocation density on the surface of interfacial crack and the results are used to determine stress intensity factors (SIFs) for axisymmetric interface cracks. Finally, several examples are provided to study the effects of the non-homogeneity constant, orthotropy parameter and thickness of FGM coating on the SIFs for interfacial cracks.. The effects of the non-homogeneity constant, orthotropy parameter and thickness of FGM coating as well as the interaction of multiple interfacial cracks on the SIFs are investigated. The results reveal that the value of the SIFs decreases with increasing the non-homogeneity parameter, orthotropy and thickness of FGM coating. The SIFs for inner tips of annular interface crack are larger than the outer tips. تفاصيل المقالة