• فهرس المقالات Gold mineralization

      • حرية الوصول المقاله

        1 - Mineral composition and paragenesis of altered and mineralized zones in the Gadir low sulfidation epithermal deposit (Lesser Caucasus, Azerbaijan)
        Novruz Novruzov Anar Valiyev Aydin Bayramov Sabuhi Mammadov Javid Ibrahimov Aygul Ebdulrehimli
        Mineralogy, gold mineralization and metal contents of the Gadir deposit have been investigated during current research in order to determine the geological conditions, temporal and spatial relationship with certain mineral assemblages and associations. The mineralogy of أکثر
        Mineralogy, gold mineralization and metal contents of the Gadir deposit have been investigated during current research in order to determine the geological conditions, temporal and spatial relationship with certain mineral assemblages and associations. The mineralogy of orebodies is mainly composed of pyrite, chalcopyrite, sphalerite, galena, petsite, native gold, electrum and subordinate molybdenite. Gold is hosted by pyrite and chalcopyrite minerals in fracture-filling textures and forms a thin dispersion condition. The native gold was observed in chalcopyrite, which is probably related to the second stage of ore deposition. The Gadir deposit can be classified to Au-Ag-Cu-Zn±Pb stockwork-type mineralization which is characteristic of low sulfidation epithermal deposit. تفاصيل المقالة
      • حرية الوصول المقاله

        2 - Prognosis of of gold mineralization phases by multifractal modeling in the Zehabad epithermal deposit, NW Iran
        سمیه شهبازی مجید قادری Peyman Afzal
        Concentration–Number (C–N) fractal method has been used for determining and separating mineralization phases based on surface lithogeochemical Au, Ag, Cu, Pb, Zn, As and Sb data in the Zehabad epithermal deposit, NW Iran. Five mineralization phases are demon أکثر
        Concentration–Number (C–N) fractal method has been used for determining and separating mineralization phases based on surface lithogeochemical Au, Ag, Cu, Pb, Zn, As and Sb data in the Zehabad epithermal deposit, NW Iran. Five mineralization phases are demonstrated by multifractal modeling for the mentioned elements correlating with geological studies. The extreme phase of Au mineralization is higher than 7.9 ppm, which is correlated with hematite deposition in silicic veins and veinlets, whereas Ag (˃79.43 ppm), Cu (˃15.85%), Pb (˃63.1%), Zn (˃11.2%) extreme phases are associated with the main stage sulfidation phases. The results show that Au, Cu, Pb, Zn and Ag have two different mineralization trends based on the multifractal nature in this area. These trends are presented based on oxidic and sulfidic mineralization. According to mineralogical studies, the main stages of mineralization include: 1) formation of chalcopyrite ± sphalerite in silicic veins in sulfidic trend; 2) deposition of native gold and specular hematite in silicic veins in response to boilling, in oxidic trend; 3) next phase of fluid penetration and replacing chalcopyrite by galena, sphalerite and tetrahedrite-tennantite in the sulfide veins, in sulfic trend. Neighbouring copper and silver are due to the formation of tetrahedrite-tennantite solid solution. The obtained results show a positive correlation between mineralization phases and the faults present at the deposit. Moreover, mineralization phases of these elements demonstrate a good correlation with silicification and silicic veins and veinlets. تفاصيل المقالة