• فهرس المقالات Full factorial experimental design

      • حرية الوصول المقاله

        1 - The removal of Hexavalent chromium; (Cr (VI)) by ZnO/LECA as a nano photocatalyst using full factorial experimental design
        Aref Shokri Safoora Karimi
        In this research, a synthesized nano photocatalyst was prepared by supporting ZnO nanoparticle on Lightweight expanded clay aggregate (LECA). The catalyst was synthesized by co-precipitation method. The SEM, FT-IR and XRD tests were used to characterize ZnO/LECA, which أکثر
        In this research, a synthesized nano photocatalyst was prepared by supporting ZnO nanoparticle on Lightweight expanded clay aggregate (LECA). The catalyst was synthesized by co-precipitation method. The SEM, FT-IR and XRD tests were used to characterize ZnO/LECA, which was employed for photocatalytic removal of Cr (VI) from aqueous solution in batch photoreactor. The full factorial experimental design (FFD) was used for the statistical analysis of data. The influence of catalyst amounts, pH, and initial concentration of Cr (VI) was investigated on the reduction of Cr (VI) to Cr (III). The number of active site was increased with increase in the concentration of catalyst to some extent. Also, the selection of other factors in optimized amount was important. The optimal conditions were obtained at 0.75 g/l of photocatalyst, pH at 5 and 20 mg/l of Cr(VI). The experimental and predicted reduction efficiency by FFD at optimal conditions were 97.6 and 96.18%, respectively. The comparison of experimental and predicted data showed a good agreement between them. تفاصيل المقالة
      • حرية الوصول المقاله

        2 - Preparation of ZnO nanocatalyst supported on todorokite and photocatalytic efficiency in the reduction of chromium (VI) pollutant from aqueous solution
        Maryam Sabonian Kazem Mahanpoor
        In this research, a new effective photocatalyst was prepared by supporting ZnO on a Todorokite (TD). This catalyst was characterized by employing scanning electron microscopy (SEM-EDX) and X-Ray Diffraction (XRD) patterns. The optical properties of the samples were meas أکثر
        In this research, a new effective photocatalyst was prepared by supporting ZnO on a Todorokite (TD). This catalyst was characterized by employing scanning electron microscopy (SEM-EDX) and X-Ray Diffraction (XRD) patterns. The optical properties of the samples were measured by diffuse reflectance spectroscopy (DRS). The purpose of using the ZnO/TD as a photocatalyst was to reduction Cr(VI), which is a pollutant in water. Experiments were carried out under different operating conditions including an initial concentration of Cr(VI), photocatalyst amounts and pH values. To optimize processes and obtain a mathematical model, the researcher used a full factorial design (with three factors at three levels). The optimal conditions were determined where the amount of photocatalyst= 200 mg L-1, pH= 2 and concentration of Cr(VI)= 15 ppm. The reduction efficiency in an optimal condition was 97.73%. The experimental results showed that kinetic was the first order and k= 0.1489 min–1. تفاصيل المقالة