• فهرس المقالات Critical Heat Flux

      • حرية الوصول المقاله

        1 - مطالعه عددی شار حرارتی بحرانی در جوشش هسته‌ای نانوسیالات هیبریدی
        علیرضا خلیلی محمد حسن نوبختی مرتضی خیاط
        با توجه به نیاز صنایع به بهبود روش‌های انتقال حرارت، ناحیه جوشش هستهای مورد توجه ویژه محققان قرار دارد چراکه جوشش سیالات امکان دستیابی به شارهای حرارتی بالاتری را نسبت به فرآیندهایی که تنها مبتنی بر انتقال حرارت جابه‌جایی غیر جوششی هستند در دسترس قرار می‌دهد. در این بین أکثر
        با توجه به نیاز صنایع به بهبود روش‌های انتقال حرارت، ناحیه جوشش هستهای مورد توجه ویژه محققان قرار دارد چراکه جوشش سیالات امکان دستیابی به شارهای حرارتی بالاتری را نسبت به فرآیندهایی که تنها مبتنی بر انتقال حرارت جابه‌جایی غیر جوششی هستند در دسترس قرار می‌دهد. در این بین، تغییر سیال عامل در سیستم‌های انتقال حرارت جوششی از سیال خالص به نانوسیال موجب بهبود مشخصه‌های انتقال حرارت شده و در نتیجه امکان انتقال شار حرارتی بالاتر در دماهای پایین‌تر را میسر می‌نماید. در نقطه شار حرارتی بحرانی که شار حرارتی ماکزیمم است، بحث امنیت سطح جوشش و محافظت از آن در برابر ازدیاد بیش از حد دما مهم میباشد. هدف از این تحقیق شبیه‌سازی عددی جوشش استخری نانوسیال هیبریدی پایه آب شامل 30% نانولوله کربنی چندجداره و 70 % اکسید تیتانیوم با غلظت حجمی 5/0%، روی سطح دایروی مسی و بررسی مشخصه‌های انتقال حرارتی و به طور ویژه نقطه شار حرارتی بحرانی می‌باشد. ابتدا فرآیند جوشش آب د‌یونیزه خالص توسط نرم‌افزار انسیس فلوئنت شبیه‌سازی گشته و نتایج با داده‌های تجربی مقایسه شدهاند. با توجه به تطابق قابل قبول نتایج، نانوسیال هیبریدی مذکور به عنوان سیال عامل تحت جوشش، با تغییر چگالی سایت‌های هسته‌زایی به صورت عددی شبیه‌سازی گردیده و مشخصات انتقال حرارت و شار حرارتی آن به دست آمده‌اند. مطابق نتایج، شار حرارتی بحرانی برای آب د‌یونیزه خالص در دمای C° 4/24 اتفاق افتاده و میزان آن در حدود 1/1 مگاوات بر متر مربع بوده در حالی که شار حرارتی بحرانی برای نانوسیال هیبریدی در دمای حدودی C° 13 بوده و مقدار آن در حدود 1مگاوات بر متر مربع میباشد. تفاصيل المقالة
      • حرية الوصول المقاله

        2 - Heat Transfer Analysis and Estimation of CHF in Vertical Channel ‎
        K. Dolati Asl E. ‎ Abedini‎ Y. Bakhshan‎ A. Mohammadi Karachi‎ R. Hamidi Jahromi
        Heat transfer occurs in flow boiling; as a result, the amount of heat between the tube wall surface and the fluid at different points of the tube may vary depending on the volume percent of vapor at those points. If the flow is fully vaporized, it does not allow for per أکثر
        Heat transfer occurs in flow boiling; as a result, the amount of heat between the tube wall surface and the fluid at different points of the tube may vary depending on the volume percent of vapor at those points. If the flow is fully vaporized, it does not allow for perfect heat transfer at that point; this significantly increases the temperature there; in this case the applied heat flux is called critical heat flux (CHF). The present paper has focused its attentions on simulating atwo-phase fluid flow within the CHF range using ANSYS Fluent. The simulation results indicated an average error below 7%, which is more than those obtained by the experimental results. The maximum temperature of the tube surface when applying CHF could range between 200 and 500 K degrees more than that of fluid saturation according to the fluid working conditions. It also should be noted that both CHF and maximum temperature increase as the input pressure and mass flux do increase. تفاصيل المقالة